Answer:
When you breathe in, or inhale, your diaphragm contracts and moves downward. This increases the space in your chest cavity, and your lungs expand into it. The muscles between your ribs also help enlarge the chest cavity. They contract to pull your rib cage both upward and outward when you inhale.
Explanation:
^^^
one mole of P weights about 31 grams
in one mole there are 6.022*10^23 atoms
we use the rule of threes
6.022*10^23atoms......weight..........31 grams
3.45*10^23 atoms.........weight...........x grams
x=(3.45*10^23*31)/6.022*10^23
x=106.95/6.022=<u><em>17.76 grams</em></u>
Answer:
e. 3.08 x 10⁻² mol of ions.
Explanation:
- Every 1.0 mole of any compound contains Avogadro's number of molecules (6.022 x 10²³).
- We can get the no. of moles of NiCl₂ using cross multiplication:
1.0 mol NiCl₂ contains → 6.022 x 10²³ molecules.
??? mol NiCl₂ contains → 6.188 x 10²¹ molecules.
∴ The no. of moles of NiCl₂ = (1.0 mol)(6.188 x 10²¹ molecules)/(6.022 x 10²³ molecules) = 1.028 x 10⁻² mol.
- NiCl₂ is ionized according to the equation:
NiCl₂ → Ni²⁺ + 2Cl⁻.
Which means that every 1.0 mol of NiCl₂ is ionized to produce 3.0 moles (1.0 mol of Ni²⁺ and 2 moles of Cl⁻).
<em>∴ The total moles of ions are released</em> = 3 x 1.028 x 10⁻² mol = <em>3.083 x 10⁻² mol of ions.</em>
Answer:
The correct answer is : 'the concatenation of NO will increase'.
Explanation:
Any change in the equilibrium is studied on the basis of Le-Chatelier's principle.
This principle states that if there is any change in the variables of the reaction, the equilibrium will shift in the direction to minimize the effect.
If the temperature is increased, so according to the Le-Chatlier's principle , the equilibrium will shift in the direction where increase in temperature occurs.

As, this is an endothermic reaction, increasing temperature will add more heat to the system which move equilibrium in the forward reaction with decrease in temperature. Hence, the equilibrium will shift in the right direction.
So, the concatenation of NO will increase.
A reduced element (which gains electrons) and an oxidized element are required for redox reactions (gives electrons). It is not a redox reaction if we lack both of them (an element can not receive electrons if no element gives electrons and vice versa).
A reduced half and an oxidized half, which always occur together, make up redox processes. While the oxidized half experiences electron loss and an increase in oxidation number, the reduced half obtains electrons and the oxidation number declines. The mnemonic devices OIL RIG, which stand for "oxidation is loss" and "reduction is gain," are simple ways to memorize this. In a redox process, the total number of electrons stays constant. In the reduction half reaction, another species absorbs those that were released in the oxidation half reaction.
In a redox reaction, two species exchange electrons, and they are given unique names:
- The ion or molecule that accepts electrons is called the oxidizing agent - by accepting electrons it oxidizes other species.
- The ion or molecule that donates electrons is called the reducing agent - by giving electrons it reduces the other species.
Hence, what is oxidized is the reducing agent and what is reduced is the oxidizing agent.
<h3>
What is the purpose of oxidizing agents and reducing agents?</h3>
By reducing other compounds and shedding electrons, a reducing agent raises its oxidation state. An oxidizing agent gets electrons by oxidizing other compounds; as a result, its oxidation state lowers.
<h3>
What is a redox reaction?</h3>
Oxidation-reduction (or "redox") reactions are chemical processes in which electrons are exchanged between two substances. An oxidation-reduction reaction is any chemical process in which a molecule, atom, or ion alters the number of electrons it has, hence increasing or decreasing its oxidation state.
Learn more about redox reaction: brainly.com/question/13293425
#SPJ4