Answer:
t = 4 s
Explanation:
As we know that the particle A starts from Rest with constant acceleration
So the distance moved by the particle in given time "t"



Now we know that B moves with constant speed so in the same time B will move to another distance

now we know that B is already 349 cm down the track
so if A and B will meet after time "t"
then in that case


on solving above kinematics equation we have

Answer:
D. creates radioactive waste.
Explanation:
Nuclear energy can create nuclear radioactive waste
Answer:
yes i agree
Explanation:
because law of inertia state that object remain at rest or in motion unless external force apply on it
<span>1) The differential equation that models the RC circuit is :
(d/dt)V_capacitor </span>+ (V_capacitor/RC) = (V_source/<span>RC)</span>
<span>Where the time constant of the circuit is defined by the product of R*C
Time constant = T = R*C = (</span>30.5 ohms) * (89.9-mf) = 2.742 s
2) C<span>harge of the capacitor 1.57 time constants
1.57*(2.742) = 4.3048 s
The solution of the differential equation is
</span>V_capac (t) = (V_capac(0) - V_capac(∞<span>))e ^(-t /T) + </span>V_capac(∞)
Since the capacitor is initially uncharged V_capac(0) = 0
And the maximun Voltage the capacitor will have in this configuration is the voltage of the battery V_capac(∞) = 9V
This means,
V_capac (t) = (-9V)e ^(-t /T) + 9V
The charge in a capacitor is defined as Q = C*V
Where C is the capacitance and V is the Voltage across
V_capac (4.3048 s) = (-9V)e ^(-4.3048 s /T) + 9V
V_capac (4.3048 s) = (-9V)e ^(-4.3048 s /2.742 s) + 9V
V_capac (4.3048 s) = (-9V)e ^(-4.3048 s /2.742 s) + 9V = -1.87V +9V
V_capac (4.3048 s) = 7.1275 V
Q (4.3048 s) = 89.9mF*(7.1275V) = 0.6407 C
3) The charge after a very long time refers to the maximum charge the capacitor will hold in this circuit. This occurs when the voltage accross its terminals is equal to the voltage of the battery = 9V
Q (∞) = 89.9mF*(9V) = 0.8091 C