Answer:
Enzyme mutations can lead to serious or fatal human disorders and are the consequence of inherited abnormalities in the affected individual's DNA. The mutation may be at a specific position in an enzyme encoded by a mutated gene, just like a single abnormal amino acid residue.
Explanation:
<u>Answer:</u> The equilibrium constant for the given reaction is 0.8
<u>Explanation:</u>
Equilibrium constant is defined as the ratio of concentration of the products raised to the power its stoichiometric coefficients to the concentration of reactants raised to power its stoichiometric coefficient. It is represented as 
For the general equation:

The equilibrium constant is represented as:
![K_c=\frac{[C]^c[D]^d}{[A]^a[B]^b}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BC%5D%5Ec%5BD%5D%5Ed%7D%7B%5BA%5D%5Ea%5BB%5D%5Eb%7D)
For the given chemical equation:

for this equation is given by:
![K_c=\frac{[H_2O][CO]}{[H_2][CO_2]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BH_2O%5D%5BCO%5D%7D%7B%5BH_2%5D%5BCO_2%5D%7D)
Concentration at equilibrium of

Putting values in above equation, we get:

Hence, the equilibrium constant for the given chemical reaction is 0.8
Sodium loses an electron and chlorine gains an electron. Simply put. It's a little more complicated, but that's what i think they're looking for.
There should be no air bubbles, as a bubble bursting can affect the volume measurement and disrupt the accuracy of the experiment.