Answer:
Option A
Explanation:
A) Yes. The reaction reaches equilibrium when the rate of reaction of the reverse reaction is equal to the rate of the forward reaction , then the only cause for the reverse reaction to be favoured is that the initial rate of the reverse was greater than the forward one.
B) No. The rate constant of the reverse reaction can be greater than the forward one but the rate also depends on concentrations, thus a reverse reaction with greater rate constant can result in the net reaction proceeding in the forward reaction, the reverse reaction or be at equilibrium depending on the concentrations or reactants and products
C) No. A lower activation energy means a higher rate constant , but a higher rate constant does not mean that the net reaction will proceed to the reactants ( see point B)
D) No. The energy changes determine conditions under thermodynamic equilibrium and therefore the net direction of the reaction will depend on the temperature and concentrations of reactants and products with respect to the equilibrium conditions.
This is all no chemistry but the answer is C
The options attached to the question above are listed below:
A. Magnetic field.
B. Type of wire.
C. Velocity of the wire.
D. Length of the wire in the field.
ANSWER
The correct option is B.
The factors that determine the induced current in a system are: the number of wires in the coil, the strength of the magnetic field and speed of armature rotation [speed of cutting]. Generally, the induced electromotive force across a conductor is equal to the rate at which magnetic flux is cut by the conductor. The type of wire used does not affect the induced EMF.