The molarity of solution made by dissolving 15.20g of i2 in 1.33 mol of diethyl ether (CH3CH2)2O is =0.6M
calculation
molarity =moles of solute/ Kg of the solvent
mole of the solute (i2) = mass /molar mass
the molar mass of i2 = 126.9 x2 = 253.8 g/mol
moles is therefore= 15.2 g/253.8 g/mol = 0.06 moles
calculate the Kg of solvent (CH3CH2)2O
mass = moles x molar mass
molar mass of (CH3CH2)2O= 74 g/mol
mass is therefore = 1.33 moles x 74 g/mol = 98.42 grams
in Kg = 98.42 /1000 =0.09842 Kg
molarity is therefore = 0.06/0.09842 = 0.6 M
Because it contains vinegar because it does not form layers when mixed with other liquids. Sugar or citric acid because they don't leave sediment.
<u>Answer:</u> The pressure that must be applied to the apparatus is 0.239 atm
<u>Explanation:</u>
To calculate the osmotic pressure, we use the equation for osmotic pressure, which is:

or,

where,
= osmotic pressure of the solution
i = Van't hoff factor = 1 (for non-electrolytes)
= mass of sucrose = 3.40 g
= molar mass of sucrose = 342.3 g/mol
= Volume of solution = 1 L
R = Gas constant = 
T = temperature of the solution = ![20^oC=[20+273]K=293K](https://tex.z-dn.net/?f=20%5EoC%3D%5B20%2B273%5DK%3D293K)
Putting values in above equation, we get:

Hence, the pressure that must be applied to the apparatus is 0.239 atm
Answer and Explanation:
Calorie is the unit of heat energy . There are 2 units with the same name 'calorie' which is widely used.
'The amount of heat energy required to increase the temperature of 1 gram of water by mass by
or 1 K is known as small calorie or gram calorie'.
Another one is large calorie which can be defined as :
'The amount of heat energy required to make arise in temperature of water 1 kg by mass by
or 1 K is known as large calorie or kilcalorie and is represented as Cal or kcal'.
After the adoption of SI system, thee units of the metric system cal, C or kilocal are considered deprecated or obsolete with the SI unit for heat energy as 'joule or J'
1 cal = 4.184 J
1C or 1 kilocal = 4184 J
Calorimeter constant:
Calorimeter constant, represented as '
' is used to quantify the heat capacity or the amount of heat of a calorimeter.
It can be calculated by ther given formula:

where,
= corresponding temperature change
= enthalpy change
Its unit is J/K or J/1^{\circ}C[/tex] which can be convertyed to cal/1^{\circ}C[/tex] by dividing the calorimeter constant by 4.184 or 4184 accordingly.