Answer:
NH4+(aq) → NH3(aq) + H+(aq)
Explanation:
Following arrhenius, an acid can be defined as:
An Arrhenius acid is a substance that, when added to water, increases the concentration of H+ ions in water.
NH4+(aq) → NH3(aq) + H+(aq)
The ammonium ion acts as a weak acid in aqueous solution, dissociating into ammonia and a hydrogen ion.
An Arrhenius base is a substance that, when added to water, increases the concentration of OH- ions in water.
NH4+(aq) will not dissciate in OH- ions. So it's not a base, but an acid.
Explanation:
n=given mass ÷molar mass
make given mass become the subject of the formula by
multiplying the molar mass on both sides of the equation.
n=0.473mol
given mass=??
molar mass=48
therefore,given mass=n×molar mass
=0.473×48
=22.704grams
mass in grams is 22.704grams
Barium-131's radiation level won't reach 1/4 of its initial level for 24 hours.
ln[A] t = -kt + ln[A] 0 is the integrated rate rule for the first-order reaction A's products.
A straight line is produced when the natural log of [A] is plotted as a function of time since this equation has the form y = mx + b.
How is the length of a half-life determined?
The amount of time needed for the reactant concentration to drop to half its initial value is known as the half-life of a reaction. A first-order reaction's half-life is a constant that is correlated with its rate constant:
t 1/2 = 0.693/k.
To know more about rate constant, visit:
brainly.com/question/20305871
#SPJ4
Answer:
C
Explanation:
A negative deltaH means that the reaction has to give up heat in order to happen. You have to treat deltaH as a reactant. So the question is do you need to add heat to the reactants to make the products. If you do, deltaH is plus.
Heat is required to make a solid go to a gas. deltaH is plus. A is not the answer.
A lot of heat is required for B (something like 400 Kj / mole. Like A, deltaH is plus and B is not the answer.
C: The liquid has to give up heat in order for the this reaction to take place. C is the answer.
D requires heat. It is not the answer.