Answer:
The correct answer is 8.79 × 10⁻² M.
Explanation:
Based on the given information, the mass of NaI given is 4.11 grams. The molecular mass of NaI is 149.89 gram per mole. The moles of NaI can be determined by using the formula,
No. of moles of NaI = Weight of NaI/ Molecular mass
= 4.11 / 149.89
= 0.027420
The vol. of the solution given is 312 ml or 0.312 L
The molarity can be determined by using the formula,
Molarity = No. of moles/ Volume of the solution in L
= 0.027420/0.312
= 0.0879 M or 8.79 × 10⁻² M
Answer: im in 8th they got me doin this
Explanation: i need help quick
I believe the correct answer from the choices listed above is the second option. The pair of elements that is most likely to chemically combine and form ionic bonds would be <span>lithium and chlorine. Lithium is metal and chlorine is nonmetal which as a compound forms ionic bonds. Hope this answers the question.</span>
A. The patch's area in square kilometers (km²) is 1.61×10⁻⁹ km²
B. The cost of the patch to the nearest cent is 734 cents
<h3>A. How to convert 16.1 cm² to square kilometers (km²)</h3>
We can convert 16.1 cm² to km² as illustrated below:
Conversion scale
1 cm² = 1×10⁻¹⁰ km²
Therefore,
16.1 cm² = 16.1 × 1×10⁻¹⁰
16.1 cm² = 1.61×10⁻⁹ km²
Thus, 16.1 cm² is equivalent to 1.61×10⁻⁹ km²
<h3>B. How to determine the cost in cent</h3>
We'll begin by converting 16.1 cm² to in². This can be obtained as illustrated below:
1 cm² = 0.155 in²
Therefore,
16.1 cm² = 16.1 × 0.155
16.1 cm² = 2.4955 in²
Finally, we shall the determine the cost in centas fo r llow:
- Cost per in² = $2.94 = 294 cent
- Cost of 2.4955 in² =?
1 in² = 294 cent
Therefore,
2.4955 in² = 2.4955 × 294
2.4955 in² = 734 cents
Thus, the cost of the patch is 734 cents
Learn more about conversion:
brainly.com/question/2139943
#SPJ1
Answer:
Explanation:
Explanation:
As you know, the empirical formula tells you what the smallest whole number ratio that exists between the atoms that make up a compound is.
In your case, you know that the empirical formula is
NH Cl
2
, which means that the regardles of how many atoms of each element you get in the actual compound, the ratio that exists between them will always be
1:2:1.
What you actually need to determine is how many empirical formulas are needed to get to the molecular formula.
Notice that the problem provides you with the molar mass of the compound. This means that you can use the molar mass of the empirical formula to determine exactly how many atoms you need to form the compound's molecule.
molar mass empirical formula×n=molar mass compound
To get the molar mass of the empirical formula, use the molar masses of its constituent atoms
14.0067 g/mol+2×1.00794 g/mol+35.453 g/mol=51.48 g/mol≈
51.5 g/mol
This means that you have
51.5g/mol×n=51.5g/mol
As you can see, you have
n=1.
This means that the empirical formula and the molecular formula are equivalent,
NH Cl.
2