Answer:
Part A: 2N₂O(g) ⇄ 2N₂(g) + O₂(g)
Part B: -r = K*[N₂O]²
Part C: K= k1*k2
Explanation:
Part A
To do the balance chemical question for the overall chemical reaction, we must sum the reaction of the steps, eliminating the intermediaries, which are the compounds that have the same amount both at reactants and products (bolded).
N₂O(g) ⇄ N₂(g) + O(g)
N₂O(g) + O(g) ⇄ N₂(g) + O₂(g)
---------------------------------------------
2N₂O(g) + O(g) ⇄ 2N₂(g) + O(g) + O₂(g)
2N₂O(g) ⇄ 2N₂(g) + O₂(g)
Part B
The velocity of the reaction (r) can be calculated based on the reactants or based on the products. Let's do it based on the disappearing of the reactant. Because it is disappearing, the variation at its concentration must be negative, so the rate will be negative.
Let's suppose its an elementary reaction, so, the concentration of the reactant must be elevated by its coefficient. And let's call the overall rate constant as K:
-r = K*[N₂O]²
Part C
Because the steps were summed, and the reactions were not multiplied by a constant or inverted, the constant K is just the multiplication of the constants of the steps:
K= k1*k2
Answer:
When a Magnesium Ribbon is burnt, a powdery substance called magnesium oxide is formed.
Explanation:
There has obviously been a chemical change because several chemical properties of the magnesium have been modified: the color, the texture and the mass.
The increase in mass is due to the fact that oxygen from the air has combined with the magnesium to make magnesium oxide, MgO.
The chemical equation, Mg + O2 MgO shows this reaction but it needs to be balanced to make 2Mg + O2 2MgO.
Using stoichiometry, we can convert this eqation into an equation with moles:
2 mol Mg + 1 mol O2 2 mol MgO.
Next, we convert to grams using atomic masses obtained from the periodic table:
48g Mg + 32g O2 80g MgO
Lastly, we determine the same thing in the proportions we used. In other words, we used only 0.15g of Mg (not 48g) so everything needs to be divided by 320. So 80 / 320 = 0.25 g. If we burn 0.15 g of Mg, we obtain 0.25 g of MgO.
Hope this helps!!!
This is my first answer.
Answer:- 27.7 grams of
are produced.
Solution:- The balanced equation is:

let's convert the grams of each reactant to moles and calculate the grams of the product and see which one gives least amount of the product. This least amount would be the answer as the least amount we get is from the limiting reactant.
Molar mass of
= 207.2+2(126.90) = 461 gram per mol
let's do the calculations for the grams of the product for the given grams of each of the reactant:

= 

= 
From above calculations, NaI gives least amount of
, so the answer is, 27.7 g of
are produced.
Answer:
C₃H₈(g) + 6 H₂O(g) ⇒ + 10 H₂(g) + 3 CO₂(g)
Explanation:
Propane can be turned into hydrogen by the two-step reforming process.
In the first step, propane and water react to form carbon monoxide and hydrogen. The balanced chemical equation is:
C₃H₈(g) + 3 H₂O(g) ⇒ 3 CO(g) + 7 H₂(g)
In the second step, carbon monoxide and water react to form hydrogen and carbon dioxide. The balanced chemical equation is:
CO(g) + H₂O(g) ⇒ H₂(g) + CO₂(g)
In order to get the net chemical equation for the overall process, we have to multiply the second step by 3 and add it to the first step. Then, we cancel what is repeated.
C₃H₈(g) + 3 H₂O(g) + 3 CO(g) + 3 H₂O(g) ⇒ 3 CO(g) + 7 H₂(g) + 3 H₂(g) + 3 CO₂(g)
C₃H₈(g) + 6 H₂O(g) ⇒ + 10 H₂(g) + 3 CO₂(g)
Explanation:
they are located in the neucleus