Answer:
Computer Model May Help to More Accurately Predict Volcano Eruptions. Scientists at the GFZ German Research Center in Potsdam, Germany, have developed a computer model which they say boosts the accuracy of volcanic eruption prediction.
Pls Mark As Brainliest
b. 460.8 m/s
Explanation:
The relationship between the speed of the wave along the string, the length of the string and the frequency of the note is

where v is the speed of the wave, L is the length of the string and f is the frequency. Re-arranging the equation and substituting the data of the problem (L=0.90 m and f=256 Hz), we can find v:

c. 18,000 m
Explanation:
The relationship between speed of the wave, distance travelled and time taken is

where
v = 6,000 m/s is the speed of the wave
d = ? is the distance travelled
t = 3 s is the time taken
Re-arranging the formula and substituting the numbers into it, we find:

Answer:
46.4 s
Explanation:
5 minutes = 60 * 5 = 300 seconds
Let g = 9.8 m/s2. And
be the slope of the road, s be the distance of the road, a be the acceleration generated by Rob, 3a/4 is the acceleration generated by Jim . Both of their motions are subjected to parallel component of the gravitational acceleration
Rob equation of motion can be modeled as s = a_Rt_R^2/2 = a300^2/2 = 45000a[/tex]
Jim equation of motion is
As both of them cover the same distance
So Jim should start 346.4 – 300 = 46.4 seconds earlier than Rob in other to reach the end at the same time
Everything starts from spectroscopy. Astronomers only have concentrated information at wavelengths that are emitted from the stars. What they do with this information is to obtain the frequency range of the stars and through spectroscopes they are responsible for dividing the radiation beams and determining the coincidence with the emission of those same waves, of chemical elements. From these observation techniques it is possible to obtain the composition and according to the color, obtaining characteristics such as temperature. The spectrum of stars consists of dark and bright lines called Fraunhofer lines. This spectrum is compared to the spectrum of different elements to find the composition of the stars. This is possible because the elements emit or absorb only specific wavelengths.
As the molecules heat and move faster, they are moving apart. So air, like most other substances, expands when heated and contracts when cooled. Because there is more space between the molecules, the air is less dense than the surrounding matter and the hot air floats upward.