Answer:
all exhaust gases from all gasoline engines
Explanation:
if u look at the back of ur car when its on u can feel the heat from the exhaust and whT ur feeling is the heat coming from the carbon monoxide gases
Answer:
(absolute).
Explanation:
Given that
Pressure ratio r
r=8

-----1
P₁(gauge) = 5.5 psig
We know that
Absolute pressure = Atmospheric pressure + Gauge pressure
Given that
Atmospheric pressure = 14.5 lbf/in²
P₁(abs) = 14.5 + 5.5 psia
P₁(abs) =20 psia
Now by putting the values in the above equation 1
Therefore the exit gas pressure will be 160 psia (absolute).
Answer and Explanation:
In thermodynamics, the overall heat transfer coefficient also referred as film effectiveness is a constant of proportionality between force drive for the heat flow and the heat flux.
It gives the measure of the heat transfer as a result of convection or conduction. The coefficient of overall heat transfer depends on surface area, resistance of the material, temperature difference, thickness, etc.
It is given by:
Q = UA
where
U = overall heat transfer coefficient
Its SI units is
.
Answer:
Heat losses by convection, Qconv = 90W
Heat losses by radiation, Qrad = 5.814W
Explanation:
Heat transfer is defined as the transfer of heat from the heat surface to the object that needs to be heated. There are three types which are:
1. Radiation
2. Conduction
3. Convection
Convection is defined as the transfer of heat through the actual movement of the molecules.
Qconv = hA(Temp.final - Temp.surr)
Where h = 6.4KW/m2K
A, area of a square = L2
= (0.25)2
= 0.0625m2
Temp.final = 250°C
Temp.surr = 25°C
Q = 64 * 0.0625 * (250 - 25)
= 90W
Radiation is a heat transfer method that does not rely upon the contact between the initial heat source and the object to be heated, it can be called thermal radiation.
Qrad = E*S*(Temp.final4 - Temp.surr4)
Where E = emissivity of the surface
S = boltzmann constant
= 5.6703 x 10-8 W/m2K4
Qrad = 5.6703 x 10-8 * 0.42 * 0.0625 * ((250)4 - (25)4)
= 5.814 W
Answer:
Q' = 8 KW.h
Q'=28800 KJ
Explanation:
Given that
Heat Q= 4 KW
time ,t = 2 hours
The amount of energy used in KWh given as
Q ' = Q x t
Q' = 4 x 2 KW.h
Q' = 8 KW.h
We know that
1 h = 60 min = 60 x 60 s = 3600 s
We know that W = 1 J/s
The amount of energy used in KJ given as
Q' = 8 x 3600 = 28800 KJ
Therefore
Q' = 8 KW.h
Q'=28800 KJ