So let's convert this amount of mL to grams:

Then we need to convert to moles using the molar weight found on the periodic table for mercury (Hg):

Then we need to convert moles to atoms using Avogadro's number:
![\frac{6.022*10^{23}atoms}{1mole} *[8.135*10^{-2}mol]=4.90*10^{22}atoms](https://tex.z-dn.net/?f=%20%5Cfrac%7B6.022%2A10%5E%7B23%7Datoms%7D%7B1mole%7D%20%2A%5B8.135%2A10%5E%7B-2%7Dmol%5D%3D4.90%2A10%5E%7B22%7Datoms%20)
So now we know that in 1.2 mL of liquid mercury, there are
present.
For every 1 molecule of Magnesium hydroxide or Mg(OH)2 there will be 2 molecules of HCl neutralized.
If molar mass of magnesium hydroxide is 58.3197g/mol, the amount of mol in 5.50 g magnesium hydroxide should be: 5.50g/ (<span>58.3197g/mol)= 0.0943mol.
Then, the amount of HCl molecule neutralized would be: 2* </span>0.0943mol= 0.18861 mol
If molar mass of HCl is 36.46094 g/mol, the mass of the molecule would be: 0.18861 mol* 36.46094g/mol = 6.88grams
It would cause a drop <span>but I am not sure double check other answers </span>
Answer:
The isotope with the greatest number of protons is:
- <u>option D: Pu-239, with 94 protons</u>
Explanation:
The number of <em>protons</em> is the atomic number and is a unique number for each type of element.
You can tell the number of protons searching the element in a periodic table and reading its atomic number.
Thus, this is how you tell the number of protons or each isotope
Sample Chemical symbol Element atomic number # of protons
A Pa-238 Pa protactinium 91 91
B U-240 U uranium 92 92
C Np-238 Np neptunium 93 93
D Pu-239 Pu plutonium 94 94