The acceleration due to gravity is g/4
The acceleration above the earth surface is given by the relation
g^'=gr^2/〖(h+r)〗^2
Since the satellite orbits the earth in a orbit of radius equal to earth radius, therefore
g^'=(gr^2)/〖(r+r)〗^2 =g/4
Thus the acceleration due to gravity on the satellite is g/4.
Answer:
V = 3.5 x 10⁻⁶ m³/s = 3.5 cm³/s
Explanation:
The volume flow rate of the blood in the artery can be given by the following formula:

where,
V = Volume flow rate = ?
A = cross-sectional area of artery = πd²/4 = π(0.004 m)²/4 = 1.26 x 10⁻⁵ m²
v = velcoity = 0.28 m/s
Therefore,

<u>V = 3.5 x 10⁻⁶ m³/s = 3.5 cm³/s</u>
Answer: yea ma’am I’m sorry but you still
"6.5 km/hr" is not a velocity. It's just a speed, so
we don't know what direction he's walking.
If he happens to be walking north, then it takes him
(12 km) / (6.5 km/hr) = 1.846... hours (rounded) .
If he's walking in any other direction, it takes him longer than that.
If the angle between north and the direction he's walking is
90 degrees or more, then he can never cover any northward
distance, no matter how long he walks.
Answer:3.31m/s², to the right
Explanation:
According to the law of conservation of momentum of a body, change in momentum of bodies before collision is equal to the change in momentum after collision.
Momentum = mass × velocity
M1 and M2 be the masses of the first and second skaters respectively
Let u1 and u2 be the velocities of the first and second skaters respectively.
v be their common velocity after collision
M1 = 77kg M2 = 66kg u1 = 4m/s² u2 = 2.5m/s²
According to the law we have
M1u1 + M2u2 = (M1+M2)v
77(4) + 66(2.5) = (77+66)v
308 + 165 = 143v
V = 473/143
V = 3.31m/s²
Their velocity after collision will become 3.31m/s²
They will both move towards the right after collision because the mass of the body moving to the right is higher than the other mass and the mass is also moving at a higher velocity than the other.