The acceleration due to gravity on Earth is 9.8 m/s per second.
Answer:
61.33 Kg
Explanation:
From the question given above, the following data were obtained:
Distance = 1×10² m
Time = 9.5 s
Kinetic energy (KE) = 3.40×10³ J
Mass (m) =?
Next, we shall determine the velocity Leroy Burrell. This can be obtained as follow:
Distance = 1×10² m
Time = 9.5 s
Velocity =?
Velocity = Distance / time
Velocity = 1×10² / 9.5
Velocity = 10.53 m/s
Finally, we shall determine the mass of Leroy Burrell. This can be obtained as follow:
Kinetic energy (KE) = 3.40×10³ J
Velocity (v) = 10.53 m/s
Mass (m) =?
KE = ½mv²
3.40×10³ = ½ × m × 10.53²
3.40×10³ = ½ × m × 110.8809
3.40×10³ = m × 55.44045
Divide both side by 55.44045
m = 3.40×10³ / 55.44045
m = 61.33 Kg
Thus, the mass of Leroy Burrell is 61.33 Kg
A) d. 10T
When a charged particle moves at right angle to a uniform magnetic field, it experiences a force whose magnitude os given by

where q is the charge of the particle, v is the velocity, B is the strength of the magnetic field.
This force acts as a centripetal force, keeping the particle in a circular motion - so we can write

which can be rewritten as

The velocity can be rewritten as the ratio between the lenght of the circumference and the period of revolution (T):

So, we get:

We see that this the period of revolution is directly proportional to the mass of the particle: therefore, if the second particle is 10 times as massive, then its period will be 10 times longer.
B) 
The frequency of revolution of a particle in uniform circular motion is

where
f is the frequency
T is the period
We see that the frequency is inversely proportional to the period. Therefore, if the period of the more massive particle is 10 times that of the smaller particle:
T' = 10 T
Then its frequency of revolution will be:

Answer:
The SI units of A, B and C are :
Explanation:
The position x, in meters, of an object is given by the equation:

Where
t is time in seconds
We know that the unit of x is meters, such that the units of A, Bt and
must be meters. So,


So, the SI units of A, B and C are :

So, the correct option is (B).