Answer:
94.67 N
Explanation:
Consider a free body diagram with force, F of 41 N applied at an angle of 37 degrees while the weight acts downwards. Resolving the force into vertical and horizontal components, we obtain a free body diagram attached.
At equilibrium, normal reaction is equal to the sum of the weight and the vertical component of the force applied. Applying the condition of equilibrium along the vertical direction.

Substituting 70 N for W, 41 N for F and
for 37 degrees
N=70+41sin37=94.67441595 N and rounding off to 2 decimal places
N=94.67 N
Answer:
b. 88, 222
Explanation:
235U₉₂ ----→ Alpha --------→ 231P₉₀ ----→- beta -----→ 231Q₉₁ ------→-beta -------→231R₉₂--------→-alpha ------→-227S₉₀ ------→ gamma -----→-227S₉₀ ----------→ neutron ------→-226T₉₀-----------→ alpha --------→222 X ₈₈
Atomic No is 88 , atomic weight = 222 .
<span>reflection, rotation, translation</span>
Answer:
Divergent - This type of evolution often occurs when closely related species diversify to new habitats. On a large scale, divergent evolution is responsible for the creation of the current diversity of life on earth from the first living cells. On a smaller scale, it is responsible for the evolution of humans and apes from a common primate ancestor.
Convergent - Convergent evolution causes difficulties in fields of study such as comparative anatomy. Convergent evolution takes place when species of different ancestry begin to share analogous traits because of a shared environment or other selection pressure. For example, whales and fish have some similar characteristics since both had to evolve methods of moving through the same medium: water.
Parallel evolution - Parallel evolution occurs when two species evolve independently of each other, maintaining the same level of similarity. Parallel evolution usually occurs between unrelated species that do not occupy the same or similar niches in a given habitat.
The wavelength of light is
given as 463 nm or can also be written as 463 x 10^-9 m. [wavelength = ʎ]
We know that the speed of
light is 299 792 458 m / s or approximately 3 x 10^8 m / s. [speed of
light = c]
Given the two values, we can calculate
for the frequence (f) using the formula:
f = c / ʎ
Substituting the given
values:
f = (3 x 10^8 m / s) / 463 x
10^-9 m
f = 6.48 x 10^14 / s = 6.48 x
10^14 s^-1
<span>f = 6.48 x 10^14 Hz</span>