Answer:
C₁₁H₁₂NO₄
Explanation:
In order to determine the empirical formula of doxycycline, we need to follow a series of steps.
Step 1: Determine the centesimal composition
C: 59.5 mg/100 mg × 100% = 59.5%
H: 5.40 mg/100 mg × 100% = 5.40%
N: 6.30 mg/100 mg × 100% = 6.30%
O: 28.8 mg/100 mg × 100% = 28.8%
Step 2: Divide each percentage by the atomic mass of the element
C: 59.5 /12.0 = 4.96
H: 5.40/1.00 = 5.40
N: 6.30/14.0 = 0.450
O: 28.8/16.0 = 1.80
Step 3: Divide all the numbers by the smallest one
C: 4.96/0.450 = 11
H: 5.40/0.450 = 12
N: 0.450/0.450 = 1
O: 1.80/0.450 = 4
The empirical formula of doxycycline is C₁₁H₁₂NO₄
Answer:
built a special cavity where the electromagnetic quantum states resonate with the natural vibrations of the atoms. In doing so, one cancouple a photon-based oscillator to a mechanical oscillator, controlling the mechanical quantum states with visible light. The result is a prototype of a quantum transducer, a device that converts light energy into mechanical energy (sound energy)
Explanation:
Sound energy is created by vibrating particles of medium that propagates as a wave. So in order to convert light (electromagnetic wave) to sound wave it has to be converted into electric or magnetic signals. Then these signals can be converted into sound waves.
However, if you consider the particle nature of light. It contains momentum and after collision sets the other particles into oscillatory motion but the wavelength of these vibrations is too high to be considered as sound waves.
Answer:
- <em>Hydration number:</em> 4
Explanation:
<u>1) Mass of water in the hydrated compound</u>
Mass of water = Mass of the hydrated sample - mass of the dehydrated compound
Mass of water = 30.7 g - 22.9 g = 7.8 g
<u>2) Number of moles of water</u>
- Number of moles = mass in grams / molar mass
- molar mass of H₂O = 2×1.008 g/mol + 15.999 g*mol = 18.015 g/mol
- Number of moles of H₂O = 7.9 g / 18.015 g/mol = 0.439 mol
<u>3) Number of moles of Strontium nitrate dehydrated, Sr (NO₃)₂</u>
- The mass of strontium nitrate dehydrated is the constant mass obtained after heating = 22.9 g
- Molar mass of Sr (NO₃)₂ : 211.63 g/mol (you can obtain it from a internet or calculate using the atomic masses of each element from a periodic table).
- Number of moles of Sr (NO₃)₂ = 22.9 g / 211.63 g/mol = 0.108 mol
<u>4) Ratio</u>
- 0.439 mol H₂O / 0.108 mol Sr(NO₃)₂ ≈ 4 mol H₂O : 1 mol Sr (NO₃)₂
Which means that the hydration number is 4.
Answer:
1.64x10⁻¹⁸ J
Explanation:
By the Bohr model, the electrons surround the nucleus of the atom in shells or levels of energy. Each one has it's energy, and the electron doesn't fall to the nucleus because it can reach another level of energy, and then return to its level.
When the electrons go to another level, it absorbs energy, and then, when return, this energy is released, as a photon (generally as luminous energy). The value of the energy can be calculated by:
E = hc/λ
Where h is the Planck constant (6.626x10⁻³⁴ J.s), c is the light speed (3.00x10⁸ m/s), and λ is the wavelength of the photon.
The wavelength can be calculated by:
1/λ = R*(1/nf² - 1/ni²)
Where R is the Rydberg constant (1.097x10⁷ m⁻¹), nf is the final orbit, and ni the initial orbit. So:
1/λ = 1.097x10⁷ *(1/1² - 1/2²)
1/λ = 8.227x10⁶
λ = 1.215x10⁻⁷ m
So, the energy is:
E = (6.626x10⁻³⁴ * 3.00x10⁸)/(1.215x10⁻⁷)
E = 1.64x10⁻¹⁸ J
The mass percent of hydrogen in CH₄O is 12.5%.
<h3>What is the mass percent?</h3>
Mass percent is the mass of the element divided by the mass of the compound or solute.
- Step 1: Calculate the mass of the compound.
mCH₄O = 1 mC + 4 mH + 1 mO = 1 (12.01 amu) + 4 (1.00 amu) + 1 (16.00 amu) = 32.01 amu
- Step 2: Calculate the mass of hydrogen in the compound.
mH in mCH₄O = 4 mH = 4 (1.00 amu) = 4.00 amu
- Step 3: Calculate the mass percent of hydrogen in the compound.
%H = (mH in mCH₄O / mCH₄O) × 100%
%H = 4.00 amu / 32.01 amu × 100% = 12.5%
The mass percent of hydrogen in CH₄O is 12.5%.
Learn more about mass percent here:brainly.com/question/4336659