Answer:
Part a)

Part b)

Explanation:
As we know that there is no external force on the system of two masses so here total momentum of the system will remains conserved
so we can say




Part b)
magnitude of the initial speed of A = 
magnitude of the initial speed of B = 
magnitude of final speed of A = 
magnitude of final speed of B = 
Now change in total kinetic energy is given as



<span>a. A solid will gain kinetic energy and become a liquid.</span>
Work done against gravity to climb upwards is always stored in the form of gravitational potential energy
so we can say

here h = vertical height raised
so here we know that

here we have

now from above equation


so work done will be given by above value
Answer:
t = 4.17 hours
Explanation:
given,
The distance between Sun and Neptune, d = 4.5 billion Km
= 4.5 x 10⁹ Km
= 4.5 x 10¹¹ m
The velocity of light, c = 3 x 10⁸ m/s
The velocity is always equal to displacement by the time.
<em>V = d / t m/s</em>
∴ t = d / V
= 4.5 x 10¹¹ m / 3 x 10⁸ m/s
= 15,000 s
= 4.17 h
Hence, the time taken by the light rays to reach the Neptune is, t = 4.17 h