Answer:
1.) U = 39.2 m/s
2.) t = 4s
Explanation: Given that the
height H = 78.4m
The projectile is fired vertically upwards under the acceleration due to gravity g = 9.8 m/s^2
Let's assume that the maximum height = 78.4m. And at maximum height, final velocity V = 0
Velocity of projections can be achieved by using the formula
V^2 = U^2 - 2gH
g will be negative as the object is moving against the gravity
0 = U^2 - 2 × 9.8 × 78.4
U^2 = 1536.64
U = sqrt( 1536.64 )
U = 39.2 m/s
The time it takes to reach its highest point can be calculated by using the formula;
V = U - gt
Where V = 0
Substitute U and t into the formula
0 = 39.2 - 9.8 × t
9.8t = 39.2
t = 39.2/9.8
t = 4 seconds.
Answer:
1/4 times your earth's weight
Explanation:
assuming the Mass of earth = M
Radius of earth = R
∴ the mass of the planet= 4M
the radius of the planet = 4R
gravitational force of earth is given as = 
where G is the gravitational constant
Gravitational force of the planet = 
=
=
recall, gravitational force of earth is given as = 
∴Gravitational force of planet = 1/4 times the gravitational force of the earth
you would weigh 1/4 times your earth's weight
Answer: Alfred Wegener provided some of the important points that supported the theory of continental drift. They are as follows-
- The continents were once all attached together, and this can be proved by studying the coastlines of some of the continents that perfectly matches with one another.
- The appearance of similar rock types and similar fossils (including both animals and plants) has also contributed much information that continents were once all together.
Answer:
So airplane will be 1324.9453 m apart after 2.9 hour
Explanation:
So if we draw the vectors of a 2d graph we see that the difference in angles is = 83 - 44.3 = 
Distance traveled by first plane = 730×2.9 = 2117 m
And distance traveled by second plane = 590×2.9 = 1711 m
We represent these distances as two sides of the triangle, and the distance between the planes as the side opposing the angle 38.7.
Using the law of cosine,
representing the distance between the planes, we see that:

d = 1324.9453 m