Answer:
c. By itself, heme is not a good oxygen carrier. It must be part of a larger protein to prevent oxidation of the iron.
e. Both hemoglobin and myoglobin contain a prosthetic group called heme, which contains a central iron ( Fe ) (Fe) atom.
f. Hemoglobin is a heterotetramer, whereas myoglobin is a monomer. The heme prosthetic group is entirely buried within myoglobin.
Explanation:
The differences between hemoglobin and myoglobin are most important at the level of quaternary structure. Hemoglobin is a tetramer composed of two each of two types of closely related subunits, alpha and beta. Myoglobin is a monomer (so it doesn't have a quaternary structure at all). Myoglobin binds oxygen more tightly than does hemoglobin. This difference in binding energy reflects the movement of oxygen from the bloodstream to the cells, from hemoglobin to myoglobin.
Myoglobin binds oxygen
The binding of O 2 to myoglobin is a simple equilibrium reaction:
Answer:

Explanation:
Given that:
The Half-life of
=
is less than that of 
Although we are not given any value about the present weight of
.
So, consider the present weight in the percentage of
to be y%
Then, the time elapsed to get the present weight of
= 
Therefore;

here;
= Number of radioactive atoms relating to the weight of y of 
Thus:

--- (1)
However, Suppose the time elapsed from the initial stage to arrive at the weight of the percentage of
to be = 
Then:
---- (2)
here;
= Number of radioactive atoms of
relating to 3.0 a/o weight
Now, equating equation (1) and (2) together, we have:

replacing the half-life of
=
( since
)
∴

The time elapsed signifies how long the isotopic abundance of 235U equal to 3.0 a/o
Thus, The time elapsed is 
Answer:

Explanation:
Hello!
In this case, since a dilution process implies that the moles of the solute remain the same before and after the addition of diluting water, we can write:

Thus, since we know the volume and concentration of the initial sample, we compute the resulting concentration as shown below:

Best regards!
Answer:
44.01 g/mol
Explanation:
Add each elements atomic mass. For oxygen you will do that twice because their is two oxygens.
- Hope that helps! Please let me know if you need further explanation.