Answer: ribosomes and membranes.
Explanation:
Answer:
The sun would appear to move more slowly across Mercury's sky.
Explanation:
This is because, the time it takes to do one spin or revolution on Mercury is 176 days (which is its period), whereas, the time it takes to do one spin or revolution on the Earth is 1 day.
Since the angular speed ω = 2π/T where T = period
So on Mercury, T' = 176days = 176 days × 24 hr/day × 60 min/hr × 60 s/min = 15,206,400 s
So, ω' = 2π/T'
= 2π/15,206,400 s
= 4.132 × 10⁻⁷ rad/s
So on Earth, T" = 1 day = 1 day × 24 hr/day × 60 min/hr × 60 s/min = 86,400 s
So, ω" = 2π/T"
= 2π/86,400 s
= 7.272 × 10⁻⁵ rad/s
Since ω' = 4.132 × 10⁻⁷ rad/s << ω" = 7.272 × 10⁻⁵ rad/s, <u>the sun would appear to move more slowly across Mercury's sky.</u>
0.25 mols SO₂ x 64.058 g SO₂/ 1 mol SO₂ = 16.0145 g SO₂
molar mass of SO₂: 64.058 g
answer: 16 grams of SO₂ (2 sig figs)
check the question to see if its asked for a specific unit for mass (grams or kilograms, if they asked for kiligrams then convert 16 grams to kilograms by dividing it by 1000)
Answer:
D. 15.8atm
Explanation:
Given parameters:
Initial pressure = 13atm
Initial temperature = 34°C = 34 + 273 = 307K
Final temperature = 100°C = 100 + 273 = 373K
Unknown:
Final pressure = ?
Solution:
To solve this problem, we apply a derivation of the combined gas law taking the volume as a constant.
The expression is shown mathematically below;
=
P and T pressure and temperature values
1 and 2 are initial and final states
Insert the parameters and solve for T₂;
=
P₂ = 15.8atm
Answer:Hola UwU
Most chemical reactions involve the breaking and formation of chemical bonds. It takes energy to break a chemical bond but energy is released when chemical bonds are formed. If more energy is released than consumed, then the chemical reaction evolves heat and is said to be exothermic.
Explanation:Adios~ UnU haha