1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
frosja888 [35]
2 years ago
14

PLEASE PLEASE HELP!!

Physics
1 answer:
boyakko [2]2 years ago
3 0

Answer:

you have patience the distance.

Explanation:

the train leaves at 6.30.

You might be interested in
________ in the ear change sound waves to electrical signals that the brain can interpret as sounds
Assoli18 [71]

Answer:

ear

Explanation:

7 0
2 years ago
Please please please please help
aivan3 [116]

Answer:

I am pretty sure its the second one but I could be wrong sorry if I am.

Explanation:

:D

4 0
3 years ago
Read 2 more answers
select the correct scientific notation form of this numeral 541 5 * 10^2 5.4 * 10^2 5.4 * 10^2 5.0 * 10^2
USPshnik [31]
To find the scientific notation, you need to divide at the decimal by the power of 10. So since there are 2 powers of 10, what you want to do is move the decimal 2 places to the left which will give you: .054
7 0
3 years ago
Why is there so much variation in human skin coloration? a. This occurred because humans underwent natural selection, which resu
Arlecino [84]

Answer:

<u>e. All of these.</u>

Explanation:

  • The skin in humans ranges from darkest to the lightest color, as a result of genetic makeup, exposure to the sun rays, skin pigmentation may be either due to the evolutionary process of natural selection, and it may be due to the biochemical effects of the UV rays.
  • As the pigment in the skin of humans is affected by the content of melanin in the body that causes the determination of skins cells of the darker colored humans, and the light skin is determined by the bluish-white tissues under the dermis and the hemoglobin.
  • The emergence of skin pigments dates back to 1.2 billion years ago. When the harsh climatic conditions drove the early humans into arid and open landscapes. In general, the people living near to equator have darkly pigmented than those living in poles are lightly pigmented.
5 0
3 years ago
The engineer of a passenger train traveling at 25.0 m/s sights a freight train whose caboose is 200 m ahead on the same track. T
zaharov [31]

a) The train collide after 22.5 seconds

b) The trains collide at the location x = 537.5 m

c) See graph in attachment

d) The freight train must have a head start of 500 m

e) The deceleration must be smaller (towards negative value) than -0.25 m/s^2

f) The two trains avoid collision if the acceleration of the freight train is at least 0.35 m/s^2

Explanation:

a)

We can describe the position of the passenger train at time t with the equation

x_p(t)=u_p t + \frac{1}{2}at^2

where

u_p = 25.0 m/s is the initial velocity of the passenger train

a=-0.100 m/s^2 is the deceleration of the train

On the other hand, the position of the freight train is given by

x_f(t)=x_0 + v_f t

where

x_0=200 m is the initial position of the freight train

v_f = 15.0 m/s is the constant velocity of the train

The collision occurs if the two trains meet, so

x_p(t)=x_f(t)\\u_pt+\frac{1}{2}at^2=x_0+v_ft\\25t+\frac{1}{2}(-0.100)t^2=200+15t\\0.050t^2-10t+200=0

This is a second-order equation that has two solutions:

t = 22.5 s

t = 177.5 s

We are interested in the 1st solution, which is the first time at which the passenger train collides with the freight train, so t = 22.5 seconds.

b)

In order to find the location of the collision, we just need to substitute the time of the collision into one of the expression of the position of the trains.

The position of the freight train is

x_f(t)=x_0 +v_ft

And substituting t = 22.5 s, we find:

x_f(22.5)=200+(15)(22.5)=537.5 m

We can verify that the passenger train is at the same position at the time of the collision:

x_p(22.5)=(25.0)(22.5)+\frac{1}{2}(-0.100)(22.5)^2=537.5 m

So, the two trains collide at x = 537.5 m.

c)

In the graph in attachment, the position-time graph of each train is represented. We have:

  • The freight train is moving at constant speed, therefore it is represented with a straight line with constant slope (the slope corresponds to its velocity, so 15.0 m/s)
  • The passenger train has a uniformly accelerated motion, so it is a parabola: at the beginning, the slope (the velocity) is higher than that of the freight train, however later it decreases due to the fact that the train is decelerating

The two trains meet at t = 22.5 s, where the position is 537.5 m.

d)

In order to avoid the collision, the freight train must have a initial position of

x_0'

such that the two trains never meet.

We said that the two trains meet if:

x_p(t)=x_f(t)\\u_p t + \frac{1}{2}at^2=x_0' + v_f t

Re-arranging,

\frac{1}{2}at^2+(u_p-v_f)t-x_0'=0\\-\frac{1}{2}at^2+(v_f-u_p)t+x_0'=0

Substituting the values for the acceleration and the velocity,

0.05t^2-10t+x_0'=0

The solution of this equation is given by the formula

t=\frac{+10\pm \sqrt{10^2-4\cdot 0.05 \cdot x_0'}}{2(0.05)}

The two trains never meet if the discrimant is negative (so that there are no solutions to the equation), therefore

10^2-4\cdot 0.05 \cdot x_0'100\\x_0'>500 m

Therefore, the freight train must have a head start of 500 m.

e)

In this case, we want to find the acceleration a' of the passenger train such that the two trains do not collide.

We solve the problem similarly to part d):

x_p(t)=x_f(t)\\u_p t + \frac{1}{2}a't^2=x_0 + v_f t

Re-arranging

\frac{1}{2}a't^2+(u_p-v_f)t-x_0=0\\-\frac{1}{2}a't^2+(v_f-u_p)t+x_0=0

Substituting,

-0.5at^2-10t+200=0

The solution to this equation is

t=\frac{+10\pm \sqrt{10^2-4\cdot (-0.5a') \cdot (200)}}{2(0.05)}

Again, the two trains never meet if the discriminant is negative, so

10^2-4\cdot (-0.5a') \cdot (200)

So, the deceleration must be smaller (towards negative value) than -0.25 m/s^2

f)

In this case, the motion of the freight train is also accelerated, so its position at time t is given by

x_f(t)=x_0 + v_f t + \frac{1}{2}a_ft^2

where a_f is the acceleration of the freight train.

Then we solve the problem similarly to the previous part: the two trains collide if their position is the same,

x_p(t)=x_f(t)\\u_p t + \frac{1}{2}at^2=x_0 + v_f t+\frac{1}{2}a_ft^2

Re-arranging,

\frac{1}{2}(a_f-a)t^2+(v_f-u_p)t+x_0=0\\\\\frac{1}{2}(a_f-0.100)t^2-10t+200=0

And the solution is

t=\frac{+10\pm \sqrt{10^2-4\cdot (0.5a_f-0.05) \cdot (200)}}{2(0.5a_f-0.05)}

Again, the two trains avoid collision if the discriminant is negative, so

10^2-4\cdot (0.5a_f-0.05) \cdot (200)0.35 m/s^2

Learn more about accelerated motion:

brainly.com/question/9527152

brainly.com/question/11181826

brainly.com/question/2506873

brainly.com/question/2562700

#LearnwithBrainly

8 0
2 years ago
Other questions:
  • Coherent microwaves of wavelength 5.00 cm enter a tall, narrow window in a building otherwise essentially opaque to the microwav
    8·1 answer
  • How much potential energy does a 1kg mess have 10m off the ground?
    5·1 answer
  • First sign of lung cancer
    6·2 answers
  • In the United States, car accidents are the leading cause of death for teenagers. Wearing seat belts helps save lives. Describe
    10·1 answer
  • A brick is resting on a smooth wooden board that is at a 30° angle. What is one way to overcome the static friction that is hold
    13·1 answer
  • When you jump from an elevated position you usually bend your knees upon reaching the ground, which makes the time of the contac
    7·1 answer
  • When a voltage difference is applied to a piece of metal wire, a 10.0 mA current flows through it. If this metal wire is now rep
    14·1 answer
  • Which list places the layers of the sun in the correct order from outermost to innermost?
    12·1 answer
  • Why are the orbits of planets only nearly circular and not perfectly circular?
    9·1 answer
  • What is the momentum of a compact car that is 750 kg and is travelling 30 m/s?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!