Assuming that the densities of the gases are:
density of air, ρ1 = 1.29 kg / m^3
density of helium, ρ2 = 0.179 kg / m^3
Since buoyant force and weight are two forces that are in
opposite direction (buoyant force is up while weight is down), therefore equate
the two:
buoyant force = weight
m g = (800 + m1) g
where m is the mass of buoyancy, g is gravity and m1 is
the maximum mass of the cargo
m = 800 + m1
We know that mass is also expressed as:
m = ρ V
where ρ is density of gas and V is volume of the sphere
Since there are two interacting gases here, therefore m
is:
m = (ρ1 – ρ2) V
Therefore:
(ρ1 – ρ2) V = 800 + m1
(1.29 – 0.179) (4π/3) (8.35m)^3 = 800 + m1
2709.33 = 800 + m1
m1 = 1,909.33 kg
Answer:
1.76m/s²
Explanation:
Given parameters:
Initial velocity = 0m/s
Final velocity = 65m/s
Distance traveled = 1200m
Unknown:
Acceleration = ?
Solution:
This is linear velocity and we apply the appropriate motion equation to solve this problem.
V² = U² + 2as
S is the distance
u is the initial velocity
V is the final velocity
a is the acceleration
Now, insert the parameters and solve;
65² = 0² + 2 x a x 1200
4225 = 2400a
a = 1.76m/s²
Answer:
Explanation:
The formula for time period of a pendulum is given as follows :
T = 2π
l is length of pendulum and g is acceleration due to gravity .
So time period of pendulum is not dependent on the mass of the pendulum . If time period is same and length is also the same then acceleration due to gravity will also be the same . Hence the acceleration due to gravity at distant planet will be same as that on the earth.
Wood isn't as tough as rock. Wood also breaks down in weather and cracks under pressure. Plus rocks were more accessible.