Mass of MnO2 = 25 g
The reaction would be 3MnO2 + 4Al --> 3Mn(s) + 2Al2O3
Molar mass of Al = 26.982 g/mol
Molar mass of MnO2 = 54.938 + 2(15.999) = 86.936 g/mol
Calculating the moles = 25 / 86.936 = 0.2876 mol.
Mole ratio MnO2 and Al considering the equation = 3 mol of MnO : 4 mol of Al
Calculating the moles of Al = 0.2876 mol MnO2 x (4 mol of Al / 3 mol of MnO)
Number of moles of Al = 0.3834
Getting the mass in grams as asked = 0.3834 mol x 26.982 g/mol = 10.34 grams.
<span> The formula for </span>measuring<span> density is Density = </span>Mass/Volume<span>, or D=M/V. The / means “per” or “for each,” which in math is the same as “divided by.”</span>
Answer:
1244 students
Explanation:
That would be y = 82*3 + 998
= 1244.
Answer:
caused by the ability of electrons to flow from one half cell too the other
Explanation:
How is the potential voltage of a redox reaction?
The potential difference is caused by the ability of electrons to flow from one half cell to the other. Electrons are able to move between electrodes because the chemical reaction is a redox reaction. A redox reaction occurs when a certain substance is oxidized, while another is reduced.
Answer:

Explanation:
N2(g)+O2(g)⇌2NO(g), 
N2(g)+2H2(g)⇌N2H4(g), 
2H2O(g)⇌2H2(g)+O2(g), 
If we add above reaction we will get:
2N2(g)+2H2O(g)⇌2NO(g)+N2H4(g) Eq (1)
Equilibrium constant for Eq (1) is 
Divide Eq (1) by 2, it will become:
N2(g)+H2O(g)⇌NO(g)+1/2N2H4(g) Eq (2)
Equilibrium constant for Eq (2) is 
