Answer: Last option
2.27 m/s2
Explanation:
As the runner is running at a constant speed then the only acceleration present in the movement is the centripetal acceleration.
If we call a_c to the centripetal acceleration then, by definition

in this case we know the speed of the runner

The radius "r" will be the distance from the runner to the center of the track



The answer is the last option
D=-5m
a(gravity)=-9.8m/s^2
vi= 0m/s
t=?
use equation d=vi*t+0.5a*t^2
because vi=0, you can cross out vi*t because anything multiplied by 0= 0
rearrange the equation to say t^2=d/0.5a
t^2= -5/-4.9
t^2=1.02
find the square root...
final answer: t=1s
Answer:
Ф = 239.73 rad
Explanation:
α = 12 + 15×t
W = ∫α×dt
= ∫(12 + 5×t)×dt
= 12×t + 2.5×t^2
then:
Ф = ∫W×dt
= ∫(12×t + 2.5×t^2)dt
= 6×t^2 + 5/6×t^3
therefore the angle at t = 4.88s is:
Ф = 6×(4.88)^2 + 5/6×(4.88)^3
= 239.73 rad
The planets move eastward against the background of fixed stars with the exception of Venus, Uranus and Pluto moving westward as seen in Earth's sky . This apparent retreating movement is called Retrograde motion. It is illusion created by Earth's movement going by outer planets in their respective orbits.