Answer:
60.9 Kelvin
Explanation: First, write out everything that you know. You are tring to find the temperature, so the temperature will be represented by x.
Pressure (P)= 4.5 atm
Volume (V)= 3L
Number of Moles (n)= ?
Gas Consant (R)= 0.0821, if the pressure is in atm, that means r is 0.0821
Temperature (T)= x
We don't have all the information we need to plug the values into the equation. We still need to know how many moles 55.0 grans of neon is.
Ne in Grams= 55
Atomic Mass of Ne= 20.1797
55/20.1797= 2.7
moles= 2.7
Now that we have all the information we need, plug everying into the equation. In case you don't know, the Ideal Gas Law Equation is PV= nRT.
(4.5)(3) = (2.7)(0.821)x
x= 60.9
Now you have your temperature! It is 60.9 in Kelvin.
Answer:
2.6 kJ
Explanation:
The formula for the amount of heat (q) absorbed by the water is
q = mCΔT
1. Calculate ΔT
ΔT = 23.5 °C - 22.1 °C = 1.4 °C
2. Calculate q
q₂ = mCΔT = 500 g × 4.184 J·°C⁻¹g⁻¹ × 1.4 °C = 2900 J = 2.9 kJ
A catalyst is a substance that speeds up a chemical reaction.
Answer:
Here's what I get
Explanation:
A. Initial observation
Gary's shell had slime and an odour.
B. Independent variable
The independent variable is the one that the experimenter changes.
There are two independent variables: the rubbing with seaweed and the drinking of Dr. Kelp.
C. The dependent variable
The dependent variable is the amount of slime and odour.
D. The conclusion
Sponge Bob can conclude that rubbing the shell with seaweed and drinking Dr. Kelp removes the slime and odour.
However, this was a poorly designed experiment. He doesn't know if it is the seaweed or the Dr. Kelp that gives the result or if he must use both together. He should change only one independent variable at a time.
Answer:
C. spontaneous at all temperatures
Explanation:
The spontaneity of reaction is determined by the sign of the gibbs free energy.
A negative sign denotes that the reaction is spontaneous, positive sign means the reaction is not spontaneous.
From the question;
ΔS° = +253 J/K
ΔH° = -125 kJ/mol
ΔG = ΔH° - TΔS°
From the data given, the condition in which we can obtain a negative value of G, is at any value of T.
For any value of T, G would always be a negative value.
This means the correct option is option C.