I am assuming you know the relation obtained between slit width, distance of screen from slits, distance of interference pattern obtained on the screen from the center and the wavelength of monochromatic light used in Young's Double Slit experiment.
λ =

λ ~ 1.97 ×10⁻⁷m
Answer:
Acceleration = 4 m/s²
Explanation:
Given the following data;
Force = 8 N
Mass = 2 kg
To find the acceleration of the block;
Newton's Second Law of Motion states that the acceleration of a physical object is directly proportional to the net force acting on the physical object and inversely proportional to its mass.
Mathematically, it is given by the formula;
Substituting into the formula, we have;
Acceleration = 4 m/s²
<span>C.
Sample C would be best, because the percentage of the energy
in an
incident wave that remains in a reflected wave from this material
is the
smallest.
The coefficient of absorption is the percentage of incident sound
that's absorbed. So the highest coefficient of absorption results in
the smallest </span><span>percentage of the energy in an
incident wave that remains.
That's what you want. </span>
Small evidence is also called trace evidence.
D, all notebooks would hit the floor at the same time. The time it takes to hit the floor is independent of their weight, but rather dependent on the acceleration of gravity. Since gravity is constant, they will all hit the floor at the same time.