Answer: v = 880m/s
Explanation: The length of a string is related to the wavelength of sound passing through the string at the fundamental frequency is given as
L = λ/2 where L = length of string and λ = wavelength.
But L = 1m
1 = λ/2
λ = 2m.
But the frequency at fundamental is 440Hz and
V = fλ
Hence
v = 440 * 2
v = 880m/s
Frost will disturb the smooth flow of air over the wing, unpleasantly
distressing its lifting competence. In other words, this spoils the even flow
of air over the wings, by this means decreasing lifting capability. Also, frost
may avoid the airplane from becoming flying at normal departure speed.
Barometer duhhhh what’s else a ruler
Answer:
Emphasis on public safety can surely reduce the risk for various groups of population
1. Proper education and training must be provided to make them aware of the risks and how they can manage those risks.
2. Proper rules and regulation must be made and strictly followed for example traffic rules so as to avoid accidents.
3. Disaster management teams should to formed to ensure minimal loss of humans and resources during any natural calamity.
4.Eradication of poverty and illiteracy should be priority so as to ensure people focus on more important issues in life rather than involve themselves in trivial things.
Explanation:
Answer:
the initial velocity of the car is 12.04 m/s
Explanation:
Given;
force applied by the break, f = 1,398 N
distance moved by the car before stopping, d = 25 m
weight of the car, W = 4,729 N
The mass of the car is calculated as;
W = mg
m = W/g
m = (4,729) / (9.81)
m = 482.06 kg
The deceleration of the car when the force was applied;
-F = ma
a = -F/m
a = -1,398 / 482.06
a = -2.9 m/s²
The initial velocity of the car is calculated as;
v² = u² + 2ad
where;
v is the final velocity of the car at the point it stops = 0
u is the initial velocity of the car before the break was applied
0 = u² + 2(-a)d
0 = u² - 2ad
u² = 2ad
u = √2ad
u = √(2 x 2.9 x 25)
u =√(145)
u = 12.04 m/s
Therefore, the initial velocity of the car is 12.04 m/s