1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Yuki888 [10]
2 years ago
14

How long will it take a person walking at 3.2 m/s to travel 16 m? *

Physics
1 answer:
BigorU [14]2 years ago
3 0

Answer:

speed=distance/time

time=distance/speed

time=16/3.2

time=5 seconds

time will take 5 seconds

You might be interested in
Without being able to look into the earth , a scientist would not be able to determine if this region has karst topography
padilas [110]

Answer: False

Explanation: They can see it by  karst topography!

6 0
3 years ago
Read 2 more answers
Karla Ayala pulls a sled on an icy road (dangerous!). Because of Karla's pull, the tension force is 151 N, and the rope makes a
skelet666 [1.2K]

Answer:

W = 1418.9 J = 1.418 KJ

Explanation:

In order to find the work done by the pull force applied by Karla, we need to can use the formula of work done. This formula tells us that work done on a body is the product of the distance covered by the object with the component of force applied in the direction of that displacement:

W = F.d

W = Fd Cosθ

where,

W = Work Done = ?

F = Force = 151 N

d = distance covered = 10 m

θ = Angle with horizontal = 20°

Therefore,

W = (151 N)(10 m) Cos 20°

<u>W = 1418.9 J = 1.418 KJ</u>

6 0
3 years ago
You have been assigned to investigate a traffic accident. The masses of car A and car B are 1300 kg and 1200 kg, respectively. C
jarptica [38.1K]

Answer:

The velocity of A before impact = 17.90 m/s

Explanation:

Coefficient of restitution = (speed of seperation)/(speed of approach)

= (v₁ - v₂)/(u₂ - u₁)

where v₁ = velocity of the car A after the impact = ?

v₂ = velocity of the car B after the impact = ?

u₂ = velocity of the car B before the impact = 0 m/s (it was initially at rest)

u₁ = velocity of car A before the impact = ?

First of, we can solve for v₂, the velocity of car B after the impact, from some of the information given in the question.

- Skid marks indicate car B slid 10 m after the impact

- The coefficient of kinetic friction the tires and road is 0.8.

According to the work energy theorem, the work done by frictional force in stopping the car B is equal to the change in kinetic energy of the car B. (All after collision)

W = ΔK.E

ΔK.E = (1/2)(1200)(v₂²) - 0 (final kinetic energy is 0 since the car comes to stop eventually)

ΔK.E = (600v₂²) J

W = F × d

where F = frictional force = μmg = 0.8×1300×9.8 = 10,192 N

d = distance the car skids over before stopping = 10 m

W = 10,192 × 10 = 101,920 J

W = ΔK.E

101,920 = 600v₂²

v₂² = (101920/600) = 169.867

v₂ = 13.03 m/s

But recall,

Coefficient of restitution = (v₁ - v₂)/(u₂ - u₁)

For the sake of convention, we take the direction of car A's initial velocity to be the positive direction.

u₁ = ?

u₂ = 0 m/s

v₁ = ?

v₂ = +13.03 m/s

Coefficient of restitution = 0.4

0.4 = (v₁ - 13.03)/(0 - u₁)

-0.4u₁ = v₁ - 13.03

v₁ = 13.03 - 0.4u₁

But this is a collision. In a collision, the linear momentum is usually conserved.

Momentum before collision = Momentum after collision

m₁u₁ + m₂u₂ = m₁v₁ + m₂v₂

1300u₁ + (1200×0) = 1300v₁ + (1200×13.03)

1300u₁ + 0 = 1300v₁ + 15639.95

1300u₁ = 1300v₁ + 15639.95

But recall, from the coefficient of restitution relation,

v₁ = 13.03 - 0.4u₁

Substituting this into the momentum balance equation.

1300u₁ = 1300v₁ + 15639.95

1300u₁ = 1300(13.03 - 0.4u₁) + 15639.95

1300u₁ = 16943.28 - 520u₁ + 15639.95

1820u₁ = 32,583.23

u₁ = (32,583.23/1820)

u₁ = 17.90 m/s

Therefore, the velocity of A before impact = 17.90 m/s

Hope this Helps!!!

4 0
3 years ago
If earth were a ping pong what size ball would jupiter be
Mariulka [41]

Answer:

a large beach ball

Explanation:

6 0
2 years ago
Riders in a carnival ride stand with their backs against the wall of a circular room of diameter
Veseljchak [2.6K]

Answer:

option C

Explanation:

given,

diameter of circular room = 8 m

rotational velocity of the rider = 45 rev/min

                  = 45 \times \dfrac{2\pi}{60}

                  =4.712 rad/s

here in this case normal force is equal to centripetal force

N = m r ω²

N = m x 4 x 4.712²

N = 88.83m

frictional force = μ N

    = 88.83m x μ

now, for the body to not to slide

gravity force is equal to frictional force

m g = 88.83 m x μ

g = 88.83 x μ

9.8 = 88.83 x μ

 μ = 0.11

hence, the correct answer  is option C

6 0
3 years ago
Other questions:
  • In this vLab you used a complex machine to launch a projectile with the ultimate goal of hitting the target. Assume you built a
    14·1 answer
  • The box plots show the summer temperatures, in degrees Fahrenheit, in two cities. Summer Temperatures in City A Summer Temperatu
    5·2 answers
  • I have a question to whoever can tell me (10 points)
    8·1 answer
  • Explain Newton’s 3 laws of motion by using the example of a rollercoaster?
    9·1 answer
  • How much force<br> would be required for a ten strand pulley system<br> to lift 1000 newtons?
    8·1 answer
  • CHEGG In the final stages of production, a pharmaceutical is sterilized by heating it from 25 to 75C as it moves at 0.2 m/s thro
    10·1 answer
  • Am i pertty and who do think is going to win the presidential election who do u want to win and why
    11·2 answers
  • What is cutoff wavelength?
    8·1 answer
  • Which one of the following is an example of a solution?
    8·1 answer
  • 3. Twelve waves pass a dock in 3.60 If the waves are traveling at 19.5 m/s , what is the wavelength of the waves?
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!