Answer:
100 %
Explanation:
The maximun efficiency possible (whem not limited by the second law of thermodynamics) happens when all the energy used is transformed into the type of energy we required with no other transformations.
For example, in an engine we want that all the energy we supply is being converted to work. That's the ideal case, but in reality always some of that energy is lost in the form of heat.
Cu + S ---> CuS
by reaction 1 mol 1 mol
from the problem 0.25 mol 0.25 mol
0.25 mol Cu
Answer:
Rubidium-85=61.2
Rubidium-87=24.36
Atomic Mass=85.56 amu
Explanation:
To find the atomic mass, we must multiply the masses of the isotope by the percent abundance, then add.
<u>Rubidium-85 </u>
This isotope has an abundance of 72%.
Convert 72% to a decimal. Divide by 100 or move the decimal two places to the left.
- 72/100= 0.72 or 72.0 --> 7.2 ---> 0.72
Multiply the mass of the isotope, which is 85, by the abundance as a decimal.
- mass * decimal abundance= 85* 0.72= 61.2
Rubidium-85=61.2
<u>Rubidium-87</u>
This isotope has an abundance of 28%.
Convert 28% to a decimal. Divide by 100 or move the decimal two places to the left.
- 28/100= 0.28 or 28.0 --> 2.8 ---> 0.28
Multiply the mass of the isotope, which is 87, by the abundance as a decimal.
- mass * decimal abundance= 87* 0.28= 24.36
Rubidium-87=24.36
<u>Atomic Mass of Rubidium:</u>
Add the two numbers together.
- Rb-85 (61.2) and Rb-87 (24.36)
Substances have more kinetic energy in the gas state than in the solid state
This is an application of Boyle's law:
P₁V₁ = P₂V₂. we don't have to convert volume and pressure to standard forms. we can even use the pressure with mmHg
1 atm = 760 mmHg
V₂ = P₁V₁ / P₂ = 745 x 500 / 760 = 490 ml
Note that here we assume constant temperature