Answer:

Explanation:
The capacitance of the parallel-plate capacitor is given by

where
ϵ0 = 8.85x10-12 C2/N.m2 is the vacuum permittivity
k = 3.00 is the dielectric constant
is the area of the plates
d = 9.00 mm = 0.009 m is the separation between the plates
Substituting,

Now we can calculate the energy of the capacitor, given by:

where
C is the capacitance
V = 15.0 V is the potential difference
Substituting,

Answer:
Their primary way of spreading is from human activities, they can quickly travel around the world for example these new "murder" hornets that can kill a large bee hive with one sting, they traveled all the way from Asia. Invasive species can also be through people's luggage, small boats, planes and large shipment like cargo carriers. I hope this helps. : )
Explanation:
A jumble of relatively young volcanic debris, some of it located where it fell in Mount Hood’s eruptive past, some of it moved here by the colossal advance of the Newton Clark Glacier during the last ice age.
Newton Clark Moraine
As a result, the rocks making up the moraine are sharp and raw, not rounded, and the debris is largely unsorted. Giant boulders perch precariously atop loose rubble, making the moraine one of the most unstable places on the mountain.
Answer:
λ = 2.62 x 10⁻¹⁰ m = 0.262 nm
Explanation:
We can use Bragg's Law's equation to solve this problem. The Bragg's Law's equation is written as follows:
mλ = 2d Sin θ
where,
m = order of reflection = 1
λ = wavelength = ?
d = distance between the planes of crystal = 3.5 x 10⁻¹⁰ m
θ = strike angle of waves on plane = 22°
Therefore, substituting the respective values in the equation, we get:
(1)λ = (2)(3.5 x 10⁻¹⁰ m)(Sin 22°)
<u>λ = 2.62 x 10⁻¹⁰ m = 0.262 nm</u>