Answer:
It makes it lighter when its closer and heavier when its farther way.
Explanation:
There are missing data in the text of the problem (found them on internet):
- speed of the car at the top of the hill:

- radius of the hill:

Solution:
(a) The car is moving by circular motion. There are two forces acting on the car: the weight of the car

(downwards) and the normal force N exerted by the road (upwards). The resultant of these two forces is equal to the centripetal force,

, so we can write:

(1)
By rearranging the equation and substituting the numbers, we find N:

(b) The problem is exactly identical to step (a), but this time we have to use the mass of the driver instead of the mass of the car. Therefore, we find:

(c) To find the car speed at which the normal force is zero, we can just require N=0 in eq.(1). and the equation becomes:

from which we find
Answer:
thanks for da 5points hoi
Explanation: thanks dawg
The thermosphere is a layer of Earth's atmosphere. The thermosphere is directly above the mesosphere and below the exosphere. It extends from about 90 km (56 miles) to between 500 and 1,000 km (311 to 621 miles) above our planet.