Correct question is;
A thermal tap used in a certain apparatus consists of a silica rod which fits tightly inside an aluminium tube whose internal diameter is 8mm at 0°C.When the temperature is raised ,the fits is no longer exact. Calculate what change in temperature is necessary to produce a channel whose cross-sectional is equal to that of the tube of 1mm. (linear expansivity of silica = 8 × 10^(-6) /K and linear expansivity of aluminium = 26 × 10^(-6) /K).
Answer:
ΔT = 268.67K
Explanation:
We are given;
d1 = 8mm
d2 = 1mm
At standard temperature and pressure conditions, the temperature is 273K.
Thus; Initial temperature; T1 = 273K,
Using the combined gas law, we have;
P1×V1/T1 = P2×V2/T2
The pressure is constant and so P1 = P2. They will cancel out in the combined gas law to give:
V1/T1 = V2/T2
Now, volume of the tube is given by the formula;V = Area × height = Ah
Thus;
V1 = (πd1²/4)h
V2 = (π(d2)²/4)h
Thus;
(πd1²/4)h/T1 = (π(d2)²/4)h/T2
π, h and 4 will cancel out to give;
d1²/T1 = (d2)²/T2
T2 = ((d2)² × T1)/d1²
T2 = (1² × T1)/8²
T2 = 273/64
T2 = 4.23K
Therefore, Change in temperature is; ΔT = T2 - T1
ΔT = 273 - 4.23
ΔT = 268.67K
Thus, the temperature decreased to 268.67K
Its the same thing. Is 250 grams more then 100 grams
Answer:
75.645 J
Explanation:
The kinetic energy is related to the mass and velocity by the formula ...
KE = 1/2mv²
For the given mass of 0.045 kg, and velocity of 41 m/s, the kinetic energy is ...
KE = 1/2(0.045 kg)(41 m/s)² = 75.645 J
__
The unit of energy, joule, is a derived unit equal to 1 kg·m²/s².
Answer:
A
Explanation:
Constant speed (without change in direction) is not accelerating. If you are slowing down, speeding up, or changing direction, you are accelerating
It’s the crest, the crest is the top part of the wave and the trough is the bottom so they correspond