Answer:
A concave mirror has a focal length of. 10.0 cm. What is its radius of curvature? ... 20.0 cm. 62. An object located 18 cm from a convex mirror produces a virtual image 9 ... cm. 75 cm. 66. Find the image position and height for the object shown in ... 1 block 1.0 cm. Vertical scale: 2 blocks 1.0 cm. F. I1 hi. 1.0 cm di. 2.7 cm. O1.
Explanation:
Hope This Helps
The potential energy of the block is given by:
V = m*g*h
m mass
g = 9.81m/s²
h height
The potential energy of a spring is given by:
V = 0.5 * k * x²
k spring constant
x compression of the spring
If the block starts from rest it has potential energy, but no kinetic energy. As it slides down the incline potential energy is converted into kinetic energy. When the block hits the spring the kinetic energy is converted into spring's potential energy. If the spring is fully compressed and the block is at rest again, the block has transferred all its energy into the spring. No energy is lost. So we can write:
m * g * h = 0.5 * k * x²
m = 0.5 kg
g = 9.81 m/s²
h = 2.5m * sin 37° = 1,5 m
x = 0,6 m
Solve for k.
k = 2 * m * g * h / x² = 40.8 N/m
Answer:
the photons (quanta of light) collide with the electrons, these electrons have to overcome the threshold energy that is the energy of union with the metal, and the energy that remains is converted to kinetic energy.
K = E - Ф
Explanation:
The photoelectric effect is the emission of electrons from the surface of a metal.
This was correctly explained by Einstein, in his explanation the energy of the photons (quanta of light) collide with the electrons, these electrons have to overcome the threshold energy that is the energy of union with the metal, and the energy that remains is converted to kinetic energy.
E = hf
E = K + Ф
K = E - Ф
The energy of the photons is given by the Planck relation E = hf and according to Einstein the number of joints must be added
E = n hf
Therefore, depending on the value of this energy, the emitted electrons can have energy from zero onwards.
Answer:
first one is series second one is paralle
Explanation: