We know that tangential acceleration is related with radius and angular acceleration according the following equation:
at = r * aa
where at is tangential acceleration (in m/s2), r is radius (in m) aa is angular acceleration (in rad/s2)
So the radius is r = d/2 = 1.2/2 = 0.6 m
Then at = 0.6 * 5 = 3 m/s2
Tangential acceleration of a point on the flywheel rim is 3 m/s2
Answer:
v= 4 m/s
Explanation:
Momenutm is, by definition, the product of mass and velocity.

Let's replace what we know and solve for whatever's left

Answer:
41.4* 10^4 N.m^2/C
Explanation:
given:
E= 4.6 * 10^4 N/C
electric field is 4.6 * 10^4 N/C and square sheet is perpendicular to electric field so, area of vector is parallel to electric field
then electric flux = ∫ E*n dA
= ∫ 4.6 * 10^4 * 3*3
= 41.4* 10^4 N.m^2/C
Answer:
Explanation:
Suppose v is the initial velocity and
is the angle of inclination
distance traveled in vertical direction in t=1 s
When gravity is present

where 



here initial velocity is v\sin \theta [/tex] so


In absence of gravity


