Answer:
c. 5days
Explanation:
there is no question but if it's a graph
the answer is 5days
Answer:
4.13×10²⁷ molecules of N₂ are in the room
Explanation:
ideal gases Law → P . V = n . R . T
Pressure . volume = moles . Ideal Gases Constant . T° K
T°K = T°C + 273 → 20°C + 273 = 293K
Let's determine the volume of the room:
18 ft . 18 ft . 18ft = 5832 ft³
We convert the ft³ to L → 5832 ft³ . 28.3L / 1 ft³ = 165045.6 L
1 atm . 165045.6 L = n . 0.082 L.atm/mol.K . 293K
(1 atm . 165045.6 L) / 0.082 L.atm/mol.K . 293K = n
6869.4 moles of N₂ are in the room
If we want to find out the number of molecules we multiply the moles by NA
6869.4 mol . 6.02×10²³ = 4.13×10²⁷ molecules
<span>This would be the activation energy. This is usually in the form of heat, which allows the reaction to undergo some sort of transition. Many times, enzymes can be used as catalysts to lower the activation energy required for the reaction to take place.</span>
Two or more different elements
One kilogram is the answer