The best answer choice here would be 'Combination'
It has more lines in it compared to hydrogen emission spectrum. It is mainly because the helium atom has more electrons than a hydrogen atom. Therefore, more electrons get excited when we pass a white light beam through a helium sample, and it causes the emission of more spectral lines
Answer:
53.7 grams of HNO3 will be produced
Explanation:
Step 1: Data given
Mass of NO2 = 59.0 grams
Molar mass NO2 = 46.0 g/mol
Step 2: The balanced equation
3NO2 + H2O→ 2HNO3 + NO
Step 3: Calculate moles NO2
Moles NO2 = 59.0 grams / 46.0 g/mol
Moles NO2 = 1.28 moles
Step 4: Calculate moles HNO3
For 3 moles NO2 we need 1 mol H2O to produce 2 moles HNO3 and 1 mol NO
For 1.28 moles NO2 we'll have 2/3 * 1.28 =0.853 moles HNO3
Step 7: Calculate mass HNO3
Mass HNO3 = 0.853 moles * 63.01 g/mol
Mass HNO3 = 53.7 grams
53.7 grams of HNO3 will be produced
Answer:
Five
Explanation:
All group 15 elements have five valence electrons, but they vary in their reactivity.