Answer:
The angle of twist can be computed using the material’s shear modulus if and only if the shear stress is still in the elastic region
Explanation:
The shear modulus (G) is the ratio of shear stress to shear strain. Like the modulus of elasticity, the shear modulus is governed by Hooke’s Law: the relationship between shear stress and shear strain is proportional up to the proportional limit of the material. The angle of twist can be computed using the material’s shear modulus if and only if the shear stress is still in the elastic region.
Answer:
System analysis can be defined as a deep analysis of a part of the structure of a module that has been designed before. System design means to make any module or a part of the structure from scratch and build it completely without estimation.
Explanation:
Answer:

Explanation:
In electrical terms, is the ratio of time in which a load or circuit is ON compared to the time in which the load or circuit is OFF.
The duty cycle or power cycle, is expressed as a percentage of the activation time. For example, a 70% duty cycle is a signal that 70% of the time is activated and the other 30% disabled. Its equation can be expressed as:

Where:



Here is a picture that will help you understand these concepts.
Answer:
fracture will occur as the value is less than E/10 (= 22.5)
Explanation:
If the maximum strength at tip Is greater than theoretical fracture strength value then fracture will occur and if the maximum strength is lower than theoretical fracture strength then no fracture will occur.
![\sigma_m = 2\sigma_o [\frac{a}{\rho_t}]^{1/2}](https://tex.z-dn.net/?f=%5Csigma_m%20%3D%202%5Csigma_o%20%5B%5Cfrac%7Ba%7D%7B%5Crho_t%7D%5D%5E%7B1%2F2%7D)

= 15 GPa
fracture will occur as the value is less than E/10 = 22.5