I would say the plastic grip because glass, wood, and plastic are all good conductors of electricity
Answer: - 25.2 kgm/s
Explanation: The mass of the ball is 0.5kg, and the initial velocity = 10.6m/s.
The final velocity is in opposite direction of the initial hence final velocity (v) = - 19.9 m/s
Impulse = change in momentum = final momentum - initial momentum.
Final momentum = mass × final velocity
Final momentum = - 19.9 × 0.5
Final momentum = - 9.95 kgm/s
Initial momentum = mass × initial velocity
Initial momentum = 0.5 × 10.6 = 5.3kgm/s
Change in momentum = final momentum - initial momentum = - 19.9 - 5.3
Change in momentum = - 25.2 kgm/s
The negative sign implies that the change in momentum is the opposite direction relative to the first.
Answer:
4NaBr + 2CaF2 ---------- 4 NaF + 2CaBrz
Explanation:
K (Q1) (Q2)/d^2 =
k : coulumb constant
Q1 : Charge on object 1
Q2 : Charge on object 2
d : distance between two charged object
Answer:
distance = 6.1022 x10^16[m]
Explanation:
To solve this problem we must use the formula of the average speed which relates distance to time, so we have
v = distance / time
where:
v = velocity = 3 x 10^8 [m/s]
distance = x [meters]
time = 6.45 [light years]
Now we have to convert from light-years to seconds in order to get the distance in meters.
![t = 6.45 [light-years]*365[\frac{days}{1light-year}]*24[\frac{hr}{1day}] *60[\frac{min}{1hr}]*60[\frac{seg}{1min} ] =203407200 [s]](https://tex.z-dn.net/?f=t%20%3D%206.45%20%5Blight-years%5D%2A365%5B%5Cfrac%7Bdays%7D%7B1light-year%7D%5D%2A24%5B%5Cfrac%7Bhr%7D%7B1day%7D%5D%20%2A60%5B%5Cfrac%7Bmin%7D%7B1hr%7D%5D%2A60%5B%5Cfrac%7Bseg%7D%7B1min%7D%20%5D%20%3D203407200%20%5Bs%5D)
Now using the formula:
distance = v * time
distance = (3*10^8)*203407200
distance = 6.1022 x10^16[m]