It is A. This is because, according to your diagram, the sunlight hits the moon, and it is blocking some of the sunlight to reach the Earth. This means that it is in between both of them.
<span><span>N2</span><span>O5</span></span>
Explanation!
When given %, assume you have 100 g of the substance. Find moles, divide by lowest count. In this case you'll end up with
<span><span>25.92 g N<span>14.01 g N/mol N</span></span>=1.850 mol N</span>
<span><span>74.07 g O<span>16.00 g O/mol O</span></span>=4.629 mol O</span>
The ratio between these is <span>2.502 mol O/mol N</span>, which corresponds closely with <span><span>N2</span><span>O5</span></span>.
Answer:
109.7178g of H2O
Explanation:
First let us generate a balanced equation for the reaction. This is illustrated below:
2C3H8O + 9O2 —> 6CO2 + 8H2O
Next we will calculate the molar mass and masses of C3H8O and H20. This is illustrated below:
Molar Mass of C3H8O = (3x12.011) + (8x1.00794) + 15.9994 = 36.033 + 8.06352 + 15.9994 = 60.09592g/mol.
Mass of C3H8O from the balanced equation = 2 x 60.09592 = 120.19184g
Molar Mass of H2O = (2x1.00794) + 15.9994 = 2.01588 + 15.9994 = 18.01528g/mol
Mass of H2O from the balanced equation = 8 x 18.01528 = 144.12224g
From the equation,
120.19184g of C3H8O produced 144.12224g of H20.
Therefore, 91.5g of C3H8O will produce = (91.5 x 144.12224) /120.19184 = 109.7178g of H2O
Given the balanced equation representing a reaction: Zn(s) + 2HCl(aq) + H2(g) + ZnCl2(aq) Which statement is true about energy in this reaction? A. The reaction is exothermic because it releases heat.