Answer:
1000 kgm²/s, 400 J
1000 kgm²/s, 1000 J
600 J
Explanation:
m = Mass of astronauts = 100 kg
d = Diameter
r = Radius = 
v = Velocity of astronauts = 2 m/s
Angular momentum of the system is given by

The angular momentum of the system is 1000 kgm²/s
Rotational energy is given by

The rotational energy of the system is 400 J
There no external toque present so the initial and final angular momentum will be equal to the initial angular momentum 1000 kgm²/s

Energy

The new energy will be 1000 J
Work done will be the change in the kinetic energy

The work done is 600 J
Answer:
Following are the solution to the given question:
Explanation:
The input linear polarisation was shown at an angle of
. It's a very popular use of a half-wave plate. In particular, consider the case
, at which the angle of rotation is
. HWP thereby provides a great way to turn, for instance, a linear polarised light that swings horizontally to polarise vertically. Illustration of action on event circularly polarized light of the half-wave platform. Customarily it is the slow axis of HWP that corresponds to either the rotation. Note that perhaps the vector of polarization is "double-headed," i.e., the electromagnetic current swinging back and forward in time. Therefore the turning angle could be referred to as the rapid axis to reach the same result. Please find the attached file.
Galileo Galilei was the first scientist to perform experiments in order to test his ideas. He was also the first astronomer to systematically observe the skies with a telescope.
:)
<span>Answer:
Using 1/f = 1/d' + 1/d ...(where d' object distance and d is image distance)
1/4 = 1/7 + 1/d
1/4 - 1/7 = 1/d
3/28 = 1/d
d = 28/3
d = 9.33 cm</span>