Answer:
B) 5.05
Explanation:
The wall thickness of a pipe is the difference between the diameter of outer wall and the diameter of inner wall divided by 2. It is given by:
Thickness of pipe = (Outer wall diameter - Inner wall diameter) / 2
Given that:
Inner diameter = ID = 25 ± 0.05, Outer diameter = OD = 35 ± 0.05
Maximum outer diameter = 35 + 0.05 = 35.05
Minimum inner diameter = 25 - 0.05 = 24.95
Thickness of pipe = (maximum outer wall diameter - minimum inner wall diameter) / 2 = (35.05 - 24.95) / 2 = 5.05
or
Thickness = (35 - 25) / 2 + 0.05 = 10/2 + 0.05 = 5 + 0.05 = 5.05
Therefore the LMC wall thickness is 5.05
Explanation:
Conduction:
Heat transfer in the conduction occurs due to movement of molecule or we can say that due to movement of electrons in the two end of same the body. Generally, phenomenon of conduction happens in the case of solid . In conduction heat transfer takes places due to direct contact of two bodies.
Convection:
In convection heat transfer of fluid takes place due to density difference .In simple words we can say that heat transfer occur due to motion of fluid.
Web developers design and create websites. They are responsible for the look of the site. They are also responsible for the site's technical aspects, such as its performance and capacity, which are measures of a website's speed and how much traffic the site can handle. In addition, web developers may create content for the site
Answer:
This doesn't represent an equilibrium state of stress
Explanation:
∝ = 1 , β = 1 , y = 1
x = 0 , y = 0 , z = 0 ( body forces given as 0 )
Attached is the detailed solution is and also the conditions for equilibrium
for a stress state to be equilibrium all three conditions has to meet the equilibrum condition as explained in the attached solution
Answer:
Recall the formula for the maximum stress, σₐ = 2σ₀ *√ (α/ρₓ)
where
σ₀ = tensile stress = 140 MPa = 1.40x 10⁸Pa
α = crack length = 3.8 × 10–2 mm = 3.8 x 10⁻⁵m
ρₓ = radius of curvature = 1.9 × 10⁻⁴mm = 1.9 × 10⁻⁷m
Substituting these values into the formula, we can calculate the max stress as
====== 2 x 1.40x 10⁸ x √(3.8 x 10⁻⁵/1.9 × 10⁻⁷)
σₐ = 24.4MPa