The molecular structure of the solids has lower ability to conduct electricity due to tight holding by nucleus.
<h3>Why molecular solids are poor conductors?</h3>
Molecular solids are also poor conductors of electricity because their valence electrons are tightly held by the nuclear charges present in the nucleus while on the other hand, Metals are good electrical conductors in the solid form due to the presence of free electrons that helps in the conduction of electricity.
Learn more about electricity here: brainly.com/question/25144822
A second-order extension of the Kohn-Sham total energy in density-functional theory (DFT) with respect to charge density fluctuations serves as the foundation for the density functional based tight binding (DFTB) approach.
What is DFTB method?
- The density functional based tight binding (DFTB) electronic structure method was used to study the clusters of bare TiO2 and TiO2 with linked organic ligands modeling polyorganic composites used as photocatalytic materials.
- The results were compared to those obtained from B3LYP/6-31G(d,p) calculations, semiempirical methods PM6 and PM7, and available experimental data.
- It was discovered that the highly scalable DFTB approach produces outcomes that are nearly on the level of theory B3LYP/6-31G(d,p).
- The trans3d set more accurately reproduces the energies of the composite material production in polycondensation processes, but the corrected version of the tiorg DFTB parameter set (tiorg-smooth) performs better for structural parameter estimations.
- The tiorg-smooth and trans3d settings perform better than the matsci set in some way. Studies of adsorption complexes of bare TiO2 clusters can be conducted using the tiorg-smooth and matsci sets.
Learn more about the Density with the help of the given link:
brainly.com/question/23487480
#SPJ4
I have attached a paper with the answer. hope you understand. let me know if you have any question