Answer:
283.725 kJ ⋅ mol − 1
Explanation:
C(s) + 2Br2(g) ⇒ CBr4(g) , Δ H ∘ = 29.4 kJ ⋅ mol − 1
Br2(g) ⇒ Br(g) , Δ H ∘ = 111.9 kJ ⋅ mol − 1
C(s) ⇒ C(g) , Δ H ∘ = 716.7 kJ ⋅ mol − 1
4*eqn(2) + eqn(3) ⇒ 2Br2(g) + C(s) ⇒ 4 Br(g) + C(g) , Δ H ∘ = 1164.3 kJ ⋅ mol − 1
eqn(1) - eqn(4) ⇒ 4 Br(g) + C(g) ⇒ CBr4(g) , Δ H ∘ = -1134.9 kJ ⋅ mol − 1
so,
average bond enthalpy is
= 283.725 kJ ⋅ mol − 1
Answer:
Molarity of NaOH = 0.025 M
Explanation:
Given data:
Molarity of HCl = C₁ = 0.05 M
Volume of HCl = V₁= 50 mL
Molarity of NaOH = C₂=?
Volume of NaOH =V₂= 100 mL
Solution:
Formula:
C₁V₁ = C₂V₂
C₁ = Molarity of HCl
V₁ = Volume of HCl
C₂ = Molarity of NaOH
V₂ = Volume of NaOH
Now we will put the values:
C₁V₁ = C₂V₂
0.05 M × 50 mL = C₂ × 100 mL
2.5 M.mL =C₂ × 100 mL
C₂ = 2.5 M.mL /100 mL
C₂ = 0.025 M
At first sight it doesn't bode well. The key is in how firmly the protons and neutrons are held together. In the event that an atomic response produces cores that are more firmly bound than the firsts then vitality will be created, if not you should place vitality into make the response happen.