Answer:
Physical Properties of Carbon:
Carbon is a unique element. It occurs in many forms. Some examples of the pure form of carbon are coal and soot.
It is soft and dull grey or black in colour.
One of the most important compounds of carbon is the charcoal, which is formed when carbon is heated in the absence in of air.
It occurs in a number of allotropic forms. Allotropes are nothing but forms of an element with varying physical as well as chemical properties.
The density of the different forms of carbon depends upon the origin of these elements. You will find some forms of carbon which are pure and some forms which are not pure like coal which is the mixture of both carbon and hydrogen.
Chemical Properties of Carbon
Carbon compounds generally show 4 reactions, they are
Combustion reaction
Oxidation reaction,
Addition reactions
Substitution reaction.
As we all know that carbon in all forms needs oxygen, heat, and light and forms carbon dioxide. When it is burned in air to give carbon dioxide, it is called as combustion.
Let us get the concept of this using some examples when it is burnt in the air: When methane CH4 is burnt in the presence of oxygen it gives us carbon dioxide, heat, and light.
Explanation:
Answer: The reason a light bulb glows is that electricity is forced through tungsten, which is a resistor. The energy is released as light and heat. A conductor is the opposite of a resistor. Electricity travels easily and efficiently through a conductor, with almost no other energy released as it passes.
Explanation:
Answer:
The number of particles in state E0 over the number of particles in state E1 will reduce
Explanation:
E0 represents the ground level state when all the particles have same energy level.
E1 represents excited state in which only a few particle reaches
E0 and E1 get further apart means that the energy difference between the two level increases.
Thus, the number of particles in state E0 over the number of particles in state E1 will reduce.
Answer:
They can generate potentials spontaneously because they have Unstable Membrane Potentials.
Explanation:
Autorythmic cells or Pacemaker cells are cells that provide Action potentials (electrical impulses) that starts off the cardiac cycle.
N:B This action potential is created spontaneously.
To explain further, the heart originate in specialized cardiac muscle cells, called autorhythmic cells, that can excite themselves and therefore are able to generate an action potential without external stimulation by nerve cells. And this sets the cardiac cycle i
(Pumping of the heart) into motion. (The pace maker potential)
The Autorhythmic cells create an action potential spontaneously
And this is possible because they have an UNSTABLE RESTING POTENTIAL that is continuously depolarizing, while it drifts slowly toward threshold. As Na+ ions enter the cell, the inner surface of the plasma membrane becomes less negative gradually, thus generating the pacemaker potential.