1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Aliun [14]
3 years ago
11

After landing on an unfamiliar planet, a space explorer constructs a simple pendulum of length 54.0 . The expl? After landing on

an unfamiliar planet, a space explorer constructs a simple pendulum of length 54.0 . The explorer finds that the pendulum completes 107 full swing cycles in a time of 132 What is the magnitude of the gravitational acceleration on this planet?
Physics
1 answer:
iogann1982 [59]3 years ago
7 0
<span>We can find the period P of one cycle, and then we can use the period to find the gravitational acceleration g on this planet. P = (132 s) / (107 cycles) = 1.2336 s/cycle The period P is 1.2336 seconds. This means that it takes 1.2336 seconds for the pendulum to swing back and forth one. Now we can use the period P to find the gravitational acceleration g. The equation for the period of a pendulum is as follows: P = 2 pi \sqrt{L/g} P^2 = (4 pi^2) L / g g = (4 pi^2) L / P^2 g = (4)(pi^2)(0.540 m) / (1.2336 s)^2 g = 14.0 m/s^2 The acceleration of gravity on the planet is 14.0 m/s^2.</span>
You might be interested in
How might the distance between the needle and the water droplets have affected the movement of the droplets?
shutvik [7]

Answer:

The behavior of droplets trapped in geometric structures is essential to droplet manipulation applications such as for droplet transport. Here we show that directional droplet movement can be realized by a V-shaped groove with the movement direction controlled by adjusting the surface wettability of the groove inner wall and the cross sectional angle of the groove. Experiments and analyses show that a droplet in a superhydrophobic groove translates from the immersed state to the suspended state as the cross sectional angle of the groove decreases and the suspended droplet departs from the groove bottom as the droplet volume increases. We also demonstrate that this simple grooved structure can be used to separate a water-oil mixture and generate droplets with the desired sizes. The structural effect actuated droplet movements provide a controllable droplet transport method which can be used in a wide range of droplet manipulation applications.

Explanation:

BOOM NOW I WINNNNNNNNNNNn

5 0
2 years ago
Read 2 more answers
Compare the catching of two different water balloons.
Stels [109]

Answer:

a. The volume V₁ and V₂

b. The case that involves the greatest momentum change = Case B

c. The case that involves the greatest impulse = Case B

d. b. The case that involves the greatest force = Case B

Explanation:

Here we have

Case A: V₁ = 150-mL, v₁ = 8 m/s

Case B: V₂ = 600-mL, v₁ = 8 m/s

a. The variable that is different for the two cases is the volume V₁ and V₂

b. The momentum change is by the following relation;

ΔM₁ = Mass, m × Δv₁

The mass of the balloon are;

Δv₁ = Change in velocity = Final velocity - Initial velocity

Mass = Density × Volume

Density of water = 0.997 g/mL

Case A, mass = 150 × 0.997 = 149.55 g

Case B, mass = 600 × 0.997 = 598.2 g

The momentum change is;

Case A: Mass, m × Δv₁ = 149.55 g/1000 × 8 m/s = 1.1964 g·m/s

Case B:  Mass, m × Δv₁ = 598.2/1000 × 8 = 4.7856 g·m/s

Therefore Case B has the greatest momentum change

The case that has the gretest momentum change = Case B

c. The momentum change = impulse therefore Case B involves the greatest impulse

d. Here we have;

Impulse = Momentum change = F_{average} × Δt = mΔV

∴ F_{average} = m·ΔV/Δt

∴ For Case A F_{average} = 149.55×8/Δt =  1196.4/Δt N

For Case B  F_{average} = 598.2×8/Δt =  4785.6/Δt

Where Δt is the same for Case A and Case B,  F_{average}  for Case B >>  F_{average}  for Case B

Therefore, Case B involves the greatest force.

4 0
2 years ago
Is the matching correct?
iragen [17]

Yes thats right :)

have a great day!!!


7 0
3 years ago
What is the velocity of the object?
dmitriy555 [2]
<h2>Hey There!</h2><h2>_____________________________________</h2><h2>Answer:</h2><h2 /><h2>\huge\boxed{\text{V = 9.5 m/s}}</h2><h2>_____________________________________</h2>

<h2>DATA:</h2>

mass = m = 2kg

Distance = x = 6m

Force = 30N

TO FIND:

Work = W = ?

Velocity = V = ?

<h2>SOLUTION:</h2>

According to the object of mass 2 kg travels a distance when the force was exerted on it. The graph between the Force and position was plotted which shows that 30 N of force was used to push the object till the distance of 6.0m.

To find the work, I will use the method of determining the area of the plotted graph. As the graph is plotted in the straight line between the Force and work, THE PICTURE ATTCHED SHOWS THE AREA COVERED IN BLUE AS WORK DONE AND HEIGHT AS 30m AND DISTANCE COVERED AS 6m To solve for the area(work) of triangle is given as,

{\Longrightarrow}\qquad \qquad \qquad W\ =\ \frac{1}{2}\;(Base)\:(Height)

Base is the x-axis of the graph which is Position i.e. 6m

Height is the y-axis of the graph which is Force i.e. 30N

So,

                           W\ =\ \frac{1}{2}\:6\:x\:30

                           W   =  90 J

The work done is 90 J.

According to the principle of work and kinetic energy (also known as the work-energy theorem) states that the work done by the sum of all forces acting on a particle equals the change in the kinetic energy of the particle.

{\Longrightarrow}\qquad \qquad \qquad W\quad =\quad K.E\\\\{\Longrightarrow}\qquad \qquad \qquad W\quad =\quad \frac{1}{2}\ m\ V^2 \\\\{\Longrightarrow}\qquad \qquad \qquad W\quad =\quad \frac{1}{2}\ 2\ (V_f-V_i)^2\\\\{V_i\ is\ 0\ because\ the\ object\ was\ initially\ at\ rest}\\\\ {\Longrightarrow}\qquad \qquad \qquad W\quad\ =\ \frac{1}{2}\ x\ 2\ (V_f-0)^2 \\\\{\Longrightarrow}\qquad \qquad \qquad 90\quad = \frac{1}{2}\ x\ 2\ (V_f)^2

\\\\{\Longrightarrow}\qquad \qquad \qquad V_f\quad =\ \sqrt{\frac{2\ (90)\ }{2}}\\\\{\Longrightarrow}\qquad \qquad \qquad \boxed {V_f\quad =\ 9.48\ m/s}

\boxed{The\ Velocity\ of\ the\ Object\ of\ mass\ 2kg\ at\ 6\ meters\ of\ distance\ was\ 9.48\ m/s}

<h2>_____________________________________</h2><h2>Best Regards,</h2><h2>'Borz'</h2>

8 0
3 years ago
Tenses of<br>write=<br>read=<br><br>​
PilotLPTM [1.2K]

Answer:

present

Explanation:

read doesn't change but write is in present tense

7 0
2 years ago
Other questions:
  • If carbon has an atomic number of 6, how many protons and neutrons are found in the carbon-14 atom? A.
    7·1 answer
  • What is the proper function of a linkage? *
    6·1 answer
  • A heat engine with a thermal efficiency of 45 percent rejects 500 kj/kg of heat. how much heat does it receive
    10·1 answer
  • The atomic number of a element if found by countingthe number of what in an atom?
    10·1 answer
  • What power objective lens has the greatest Field of view
    9·1 answer
  • Ian throws a ball straight up into the air at a speed of 10 m/s. what is the ball's speed at the highest point?
    15·1 answer
  • The angle between the incident ray and reflected ray is 90°. Calculate the angle of incidence and the angle of reflection.​
    9·1 answer
  • What is an electromagnetic wave?
    13·1 answer
  • I need the answer asap plz!!
    8·1 answer
  • A juggler throws two balls to the same height so that one is at the halfway point going up when the other is at the halfway poin
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!