Explanation:
According to the law of conservation of energy
,
Potential energy = kinetic energy
I =
mgh =
v = 7.4 m/s
thus, we can conclude that the translational speed of the cylinder when it leaves the incline is 7.4 m/s.
Answer:
Explanation:
The given time is 1 / 4 of the time period
So Time period of oscillation.
= 4 x .4 =1.6 s
When the block reaches back its original position when it came in contact with the spring for the first time , the block and the spring will have maximum
velocity. After that spring starts unstretching , reducing its speed , so block loses contact as its velocity is not reduced .
So required velocity is the maximum velocity of the block while remaining in contact with the spring.
v ( max ) = w A = 1.32 m /s.
Answer:
Check the explanation
Explanation:
Kindly check the attached images below to see the step by step explanation to the question above.
We use the following expression
T = 2*pi *sqrt(l/g)
Where T is the period of the pendulum
l is the length of the pendulum
and g the acceleration of gravity
We solve for l
l = [T/2*pi]² *g = [30s/2*pi]²* 9.8 [m/s²] = 223.413 m
The tower would need to be at least 223.413 m high
Answer:
This is known as a Galilean transformation where
V' = V - U
Where the primed frame is the Earth frame and the unprimed frame is the frame moving with respect to the moving frame
V - speed of object in the unprimed frame
U - speed of primed frame with respect to the unprimed frame
Here we have:
V = -15 m/s speed of ball in the moving frame (the truck)
U = -20 m/s speed of primed (rest) frame with respect to moving frame
So V' = -15 - (-20) = 5 m/s
It may help if you draw a vector representing the moving frame and then add
a vector representing the speed of the ball in the moving frame.