In a combustion of a hydrocarbon compound, 2 reactions are happening per element:
C + O₂ → CO₂
2 H + 1/2 O₂ → H₂O
Thus, we can determine the amount of C and H from the masses of CO₂ and H₂O produced, respectively.
1.) Compute for the amount of C in the compound. The data you need to know are the following:
Molar mass of C = 12 g/mol
Molar mass of CO₂ = 44 g/mol
Solution:
0.5008 g CO₂*(1 mol CO₂/ 44 g)*(1 mol C/1 mol CO₂) = 0.01138 mol C
0.01138 mol C*(12 g/mol) = 0.13658 g C
Compute for the amount of H in the compound. The data you need to know are the following:
Molar mass of H = 1 g/mol
Molar mass of H₂O = 18 g/mol
Solution:
0.1282 g H₂O*(1 mol H₂O/ 18 g)*(2 mol H/1 mol H₂O) = 0.014244 mol H
0.014244 mol H*(1 g/mol) = 0.014244 g H
The percent composition of pure hydrocarbon would be:
Percent composition = (Mass of C + Mass of H)/(Mass of sample) * 100
Percent composition = (0.13658 g + 0.014244 g)/(<span>0.1510 g) * 100
</span>Percent composition = 99.88%
2. The empirical formula is determined by finding the ratio of the elements. From #1, the amounts of moles is:
Amount of C = 0.01138 mol
Amount of H = 0.014244 mol
Divide the least number between the two to each of their individual amounts:
C = 0.01138/0.01138 = 1
H = 0.014244/0.01138 = 1.25
The ratio should be a whole number. So, you multiple 4 to each of the ratios:
C = 1*4 = 4
H = 1.25*4 = 5
Thus, the empirical formula of the hydrocarbon is C₄H₅.
3. The molar mass of the empirical formula is
Molar mass = 4(12 g/mol) + 5(1 g/mol) = 53 g/mol
Divide this from the given molecular weight of 106 g/mol
106 g/mol / 53 g/mol = 2
Thus, you need to multiply 2 to the subscripts of the empirical formula.
Molecular Formula = C₈H₁₀
- Get 3 cups of water at the exact same temperature, using the thermometer to check.
- Label the cups as ‘whole’, ‘pieces’, and ‘crushed’
- Next, get something to dissolve, in this case, polident. Take one of the polident tablets and break it into 4 pieces, and set it aside.
- Take another polident tablet and this time put it into a different cup, and crush it. Set it aside.
- Keep the last tablet whole.
- Set up your stopwatch and drop the polident tablet that is whole in the cup labeled ‘whole’, starting the stopwatch at the same time.
- Watch the cup and see when the tablet is fully dissolved, then stop the stopwatch.
- Record the time in the table.
- Repeat steps 6-8 for both the ‘pieces’ and ‘crushed’ tablets.
Hope this helps! Please let me know if you need more help, or if you think my answer is incorrect. Brainliest would be MUCH appreciated. Have a great day!
Stay Brainy!
−
Explanation:
Scientist use trees a whole lot to look at climate of the past by examining tree rings.
These are layers of cambium in each successive years formed. They have an annual growth pattern and are known as tree rings.
Tree rings can be used to decipher the age of a tree.
- These three rings can be used to interpret climatic patterns.
- During a wet climate, the tree rings are more robust and bigger.
- In a dry climate, the rings are thinner.
- These alternating patterns can be used to decipher the climatic signatures in a tree.
- Sometimes, it is possible to evaluate some certain isotopes that are useful in climatic studies.
learn more:
Climate change brainly.com/question/7824762
#learnwithBrainly
Answer:
wattter
Explanation: H20 jk lma++ooo