Answer:
The net force is zero Newtons (0 N).
Explanation:
If the forces on one side is 4N and the forces on another side are 4N, the forces cancel out and you have a net force of zero. This means the object is at rest or is moving at a constant rate based on the question.
Hope this helps!
Answer:
The statement is true.
Both gravity and centrifugal force act on the Moon which causes it get pulled towards Earth (gravity) and get "flung away" so it doesn't hit us (centrifugal force).
-- We know that the y-component of acceleration is the derivative of the
y-component of velocity.
-- We know that the y-component of velocity is the derivative of the
y-component of position.
-- We're given the y-component of position as a function of time.
So, finding the velocity and acceleration is simply a matter of differentiating
the position function ... twice.
Now, the position function may look big and ugly in the picture. But with the
exception of 't' , everything else in the formula is constants, so we don't even
need any fancy processes of differentiation. The toughest part of this is going
to be trying to write it out, given the text-formatting capabilities of the wonderful
envelope-pushing website we're working on here.
From the picture . . . . . y (t) = (1/2) (a₀ - g) t² - (a₀ / 30t₀⁴ ) t⁶
First derivative . . . y' (t) = (a₀ - g) t - 6 (a₀ / 30t₀⁴ ) t⁵ = (a₀ - g) t - (a₀ / 5t₀⁴ ) t⁵
There's your velocity . . . /\ .
Second derivative . . . y'' (t) = (a₀ - g) - 5 (a₀ / 5t₀⁴ ) t⁴ = (a₀ - g) - (a₀ /t₀⁴ ) t⁴
and there's your acceleration . . . /\ .
That's the one you're supposed to graph.
a₀ is the acceleration due to the model rocket engine thrust
combined with the mass of the model rocket
'g' is the acceleration of gravity ... 9.8 m/s² or 32.2 ft/sec²
t₀ is how long the model rocket engine burns
Pick, or look up, some reasonable figures for a₀ and t₀
and you're in business.
The big name in model rocketry is Estes. Their website will give you
all the real numbers for thrust and burn-time of their engines, if you
want to follow it that far.
cardiovascular fitness: 3, 4, 7
flexibility: 1, 5
muscular fitness: 2, 6
The helium atom is found to contain more particles than the hydrogen atom.
<h3>What is a subparticle?</h3>
An atom is composed of particles and these particles are electrons protons and neutrons. The collective name for these particles is the subatomic particles.
Now we know that the helium atom contains more sub atomic particles than the atom of hydrogen. This is because, the helium atom contains two neutrons and two protons as well as two electrons. On the other hand, the hydrogen atom contains one neutron and one proton as well as one electron.
Thus, the helium atom is found to contain more particles than the hydrogen atom.
Learn more about helium atom:brainly.com/question/4945478
#SPJ1