Answer:
7.75%
Explanation:
mass of climber, m = 55 kg
height, h = 701 m
Qc = 4.5 x 10^6 J (heat exhaused by the body)
Work = m x g x h
W = 55 x 9.8 x 701
W = 377839 J
W = QH - Qc
Where, QH is the heat input
QH = 377839 + 4.5 x 10^6
QH = 4877839 J
So, the efficiency
e = W / QH
e = 377839 / 4877839
e = 0.0774 = 7.75 %
Thus, the efficiency of the body is 7.75 %.
With the use of below formula, at 879 °C, velocity will be double the velocity at 15 °C.
<h3>
What is the relationship between Velocity and sound ?</h3>
The velocity of sound waves in air is proportional to the square root of Thermodynamic temperature. That is, V = K
Given that the temperature at which the velocity of sound in air is twice its velocity at 15°C, Let us make use of the formula;
(v2/v1) = √(T2 / T1)
Where
- T2 = final absolute temperature
- T1 = initial temperature.
Recall that absolute temperature = °C + 273.
If v2 = 2 × v1 and temperature in degree Celsius = 15°C, then,
Temperature in Kelvin K = 15 + 273 = 288
Substitute all the parameters into the formula
(2 × v1)/v1 = √(T2/288)
2 = √ (T2 /288)
Square both sides
4 = (T2/288)
T2 = 4 × 288
T2 = 1152K
Temperature in degrees Celsius = 1152 - 273 = 879 °C.
Therefore, at 879 °C, velocity will be double the velocity at 15 °C.
Learn more about sound waves here: brainly.com/question/13105733
#SPJ1
Answer:
<em><u>Given: </u></em>
m1 = 7 kg
V1 = 12 m/s
m2 = 25 kg
V2 = 6 m/s
<em><u>To find:</u></em>
Combined speed of two balls stick together after collision V = ?
<em><u>Solution:</u></em>
<em>According to law of conservation of momentum,</em>
m1V1 + m2V2 = (m1+m2)V
7×12 + 25×6 = (7+25)V
84 + 150 = 32V
V = 234/32
V = 7.31 m/s
Combined speed of two ball is 7.31 m/s
<em><u>Thanks for joining brainly community!</u></em>
EXPLAIN MORE!!! i need more detail if i can help you
It would swim 30*15 metres, which is 450 metres.