Answer:
Rate of change of area will be 
Explanation:
We have given rate of change of radius 
Radius of the circular plate r = 52 cm
Area is given by 
So 
Puting the value of r and 

So rate of change of area will be 
Mostly gravity voloume and sometimes what it is made of
Answer:
The kinetic energy K of the moving charge is K = 2kQ²/3d = 2Q²/(4πε)3d = Q²/6πεd
Explanation:
The potential energy due to two charges q₁ and q₂ at a distance d from each other is given by U = kq₁q₂/r.
Now, for the two charges q₁ = q₂ = Q separated by a distance d, the initial potential energy is U₁ = kQ²/d. The initial kinetic energy of the system K₁ = 0 since there is no motion of the charges initially. When the moving charge is at a distance of r = 3d, the potential energy of the system is U₂ = kQ²/3d and the kinetic energy is K₂.
From the law of conservation of energy, U₁ + K₁ = U₂ + K₂
So, kQ²/d + 0 = kQ²/3d + K
K₂ = kQ²/d - kQ²/3d = 2kQ²/3d
So, the kinetic energy K₂ of the moving charge is K₂ = 2kQ²/3d = 2Q²/(4πε)3d = Q²/6πεd
We know that the source of light in the universe is the Sun. Hence, the light we see as moonlight travels from the Sun's surface, to the moon, then to Earth. So, before being able to solve this problem, we have to know the distance between the Sun and the moon, and the distance between the moon and Earth. In literature, these values are 3.8×10⁵ km (Sun to moon) and 384,400 km (moon to Earth). Knowing that the speed of light is 300,000 km per second, then the total time would be
Time = distance/speed
Time = (3.8×10⁵ km + 384,400 km)/300,000 km/s
Time = 2.548 seconds
Thus, it only takes 2.548 for the light from the Sun to reach to the Earth as perceived to be what we call moonlight.
Answer:
C) Unscrew one light. If the other lights turn off, it's a series circuit.
Explanation:
THIS IS THE COMPLETE QUESTION BELOW;
A strand of 10 lights is plugged into an outlet. How can you determine if the lights are connected in series or parallel? A) Unscrew one light. If the other lights stay on, it's a series circuit. B) Unplug the strand. If the first light stays on, it's a series circuit. C) Unscrew one light. If the other lights turn off, it's a series circuit. D) Cut the strand in half. If the plugged in half stays on, it's a series circuit.
SERIES CIRCUIT
In this circuit, the components there are in the same path, the entire circuit has the same current, each of the components posses different voltage drop. Hence, failure of one components to work, there will be break in entire circuit then other components cease to work.
PARALLEL CIRCUIT
This circuit has equal voltage drop across all the components, any problem in a component will not has effect on other components.
Therefore, if one want to determine if a light connection is in series or in parallel, one of the light can be unplugged if others stop working it means it's series, if other works it's parallel.