To solve this exercise, we will first proceed to calculate the electric force given by the charge between the proton and the electron (it). From the Force we will use Newton's second law that will allow us to find the acceleration of objects. The Coulomb force between two charges is given as

Here,
k = Coulomb's constant
q = Charge of proton and electron
r = Distance
Replacing we have that,


The force between the electron and proton is calculated. From Newton's third law the force exerted by the electron on proton is same as the force exerted by the proton on electron.
The acceleration of the electron is given as



The acceleration of the proton is given as,



Answer:
Time taken for car to stop = 0.89 seconds (Approx.)
Explanation:
Given:
Mass of car = 1100 kg
Speed of car = 15 m/s
Impact force = 185,000 N
Find:
Time taken for car to stop
Computation:
Change in momentum of car = M(v) - M(u)
Change in momentum of car = 1100(0) - 1100(15)
Change in momentum of car = -16,500
Time taken for car to stop = I Change in momentum of car I / Impact force
Time taken for car to stop = I-16,500I / 185,000
Time taken for car to stop = 0.89 seconds (Approx.)
I believe Action potential is the brief wave of positive charge that sweeps down the axon. Axon is part of the neuron that conducts impulses from the dendrites towards the cell body along the neuron. The action potential is brief since the sodium channels can only stay open for a very brief amount of time. As it travels along the neuron there is a change in polarity across the membrane of the axon .
Answer:
Electrical energy is answer
Explanation:
hope it helps
Mark me as brainliest plz.