Answer:
See the answer below
Explanation:
The optimal conditions for high biodiversity seem to be a <u>warm temperature</u> and <u>wet climates</u>.
<em>The tropical areas of the world have the highest biodiversity and are characterized by an average annual temperature of above 18 </em>
<em> and annual precipitation of 262 cm. The areas are referred to as the world's biodiversity hotspots. </em>
Consequently, it follows logically that the optimal conditions for high biodiversity would be a warm temperature of above 18
and wet environment with annual precipitation of not less than 262 cm.
The variation in temperature and precipitation across biomes can thus be said to be responsible for the variation in the level of biodiversity in them.
Answer:
Mechanical waves need matter to transfer energy while electromagnetic waves do not. ... Waves change direction when they move from one material into another (matter) through the process of refraction. The wave will change direction when the speed of the wave changes.
Answer:
a) 2.85 kW
b) $ 432
c) $ 76.95
Explanation:
Average price of electricity = 1 $/40 MJ
Q = 20 kW
Heat energy production = 20.0 KJ/s
Coefficient of performance, K = 7
also
K=(QH)/Win
Now,
Coefficient of Performance, K = (QH)/Win = (QH)/P(in) = 20/P(in) = 7
where
P(in) is the input power
Thus,
P(in) = 20/7 = 2.85 kW
b) Cost = Energy consumed × charges
Cost = ($1/40000kWh) × (16kW × 300 × 3600s)
cost = $ 432
c) cost = (1$/40000kWh) × (2.85 kW × 200 × 3600s) = $76.95
4x + 4 < 4x + 3 (expand it)
4 < 3 (cancel 4x on both sides)
Since 4 < 3 is not true there is no solution.
Answer: NO SOLUTION.
Answer:
5 m/s2, left
Explanation:
We can solve the problem by applying Newton's second law of motion, which states that:

where:
is the net force acting on an object
m is the mass of the object
a is its acceleration
In this problem, we have:
(to the left) is the net force on the object
m = 2.0 kg is the mass
So, the acceleration is:
in the same direction as the force (left).