Let original length be L. The new length is therefore 4L.
Let original cross sectional surface area of the wire be equal to πr^2.
This means original volume was L x πr^2 = Lπr^2
The volume is the same but the length is different so 4L x new surface area must be equal to Lπr^2. Let new surface area be equal to Y.
4L x Y = Lπr^2
=> Y = (πr^2 )/ 4
Using the resistivity formula,
R = pL/A. p which is resistivity is a constant so it stays the same
But this time, instead of L we have 4L and instead of πr^2 we have (πr^2)/4.
so the new resistance
= (4Lp)/ {(πr^2)/4}
= 16 (pL)/(πr^2)
= 16 (pL)/A. because πr^2 is A
since pL/A is equal to R from the formula, this is equal to
16 R.
R was 10 ohms
therefore new resistance is 16 x 10 = 160 ohms
Do you mean ‘Does a larger object have less attraction than a smaller object?’ If so, then the answer is objects with a larger mass exert more attraction while objects with a smaller mass have less attraction.
Answer:
Distance covered is: 45 meters
Displacement is 15 meters to the right of where he started
Explanation:
Notice that Brady has walk a path that looks like an incomplete rectangle of height 5 meters and length 25meters, although he actually didn't cover the full length (25 meters) when getting back to the point where he started (he made just 10 meters instead of 25 after the third turn right) See attached image.
Therefore, Brady's displacement is 15 meters to the right of where he started, and the total distance he covered is :
Distance = 5m + 25m + 5m + 10m = 45m
velocity = traveled distance ÷ time of the traveled distance is seconds
velocity = 600 ÷ 60
velocity = 10 m/s
_________________________________
Kinetic Energy = 1/2 × mass × ( velocity )^2
KE = 1/2 × 60 × ( 10 )^2
KE = 30 × 100
KE = 3000 j
Answer: When the box is on a step and in a resting position then in this situation, the forces acting on the box is said to be balanced forces. While carrying the box to the top of the stair then the forces acting on it will be unbalanced forces.
Explanation:
When the box is on a step and in a resting position then the forces acting on the box are acting in an equal in magnitude and opposite in direction. Therefore, these forces are balanced forces.
While carrying the box to the top of the stair then the forces acting on it will be unbalanced forces because the box is changing its state. There is an unbalanced force which opposes the motion of the box.