Answer:

Explanation:
We have given initial length of the steel guitar l = 1 m
Cross sectional area 
Young's modulus 
Force F = 1500 N
So stress 
We know that young's modulus 
So 

Now strain 


It would be 4 atm, because the way to figure out the final pressure is that (P1)(V1)=(P2)(V2)
meaning that the original pressure x original volume is equal to the final pressure x final volume. This gas law is called Boyle's law if you'd like to learn more about it.
But (1 atm)(40 mL)=(4 atm)(10 mL)
So it would be the second choice.
As per the question, the mass of meteorite [ m]= 50 kg
The velocity of the meteorite [v] = 1000 m/s
When the meteorite falls on the ground, it will give whole of its kinetic energy to earth.
We are asked to calculate the gain in kinetic energy of earth.
The kinetic energy of meteorite is calculated as -
![Kinetic\ energy\ [K.E]\ =\frac{1}{2} mv^2](https://tex.z-dn.net/?f=Kinetic%5C%20energy%5C%20%5BK.E%5D%5C%20%3D%5Cfrac%7B1%7D%7B2%7D%20mv%5E2)
![=\frac{1}{2}50kg*[1000\ m/s]^2](https://tex.z-dn.net/?f=%3D%5Cfrac%7B1%7D%7B2%7D50kg%2A%5B1000%5C%20m%2Fs%5D%5E2)

Here, J stands for Joule which is the S.I unit of energy.
Answer:
See the explanation below.
Explanation:
We know that density is defined as the relationship between mass and volume.

where:
m = mass [kg]
V = volume [m³]
Therefore Ro is given in:
![[kg/m^{3} ]](https://tex.z-dn.net/?f=%5Bkg%2Fm%5E%7B3%7D%20%5D)
Answer:
weight = 25*10 =250 N
Explanation:
g must be given in units of m/s^2
The weight of any type of body will be the product of his mass by the gravity
where:
m =mass [kg]
F = force [N] or [kg*m/s^2]
g = acceleration [m/s^2]