Frequency = 1 / (period)
Frequency = 1 / (10 seconds) = (1/10) ( / second) = 0.1 per second = <em>0.1 Hz</em>.
The total displacement of the toy car at the given positions is 0.
The given parameters;
- <em>First displacement of the car, = 5 cm left</em>
- <em>Second displacement of the car, = 8 cm right</em>
- <em>Third displacement of the car, = 3 cm to the left</em>
The total displacement of the car is calculated as follows;
- <em>Let the </em><em>left </em><em>direction be "</em><em>negative </em><em>direction"</em>
- <em>Let the </em><em>right </em><em>direction be "</em><em>positive </em><em>direction"</em>

Thus, the total displacement of the toy car at the given positions is 0.
Learn more about displacement here: brainly.com/question/18158577
Answer: a) 274.34 nm; b) 1.74 eV c) 1.74 V
Explanation: In order to solve this problem we have to consider the energy balance for the photoelectric effect on tungsten:
h*ν = Ek+W ; where h is the Planck constant, ek the kinetic energy of electrons and W the work funcion of the metal catode.
In order to calculate the cutoff wavelength we have to consider that Ek=0
in this case h*ν=W
(h*c)/λ=4.52 eV
λ= (h*c)/4.52 eV
λ= (1240 eV*nm)/(4.52 eV)=274.34 nm
From this h*ν = Ek+W; we can calculate the kinetic energy for a radiation wavelength of 198 nm
then we have
(h*c)/(λ)-W= Ek
Ek=(1240 eV*nm)/(198 nm)-4.52 eV=1.74 eV
Finally, if we want to stop these electrons we have to applied a stop potental equal to 1.74 V . At this potential the photo-current drop to zero. This potential is lower to the catode, so this acts to slow down the ejected electrons from the catode.
Answer:
N
Explanation:
Using the formula you gave:

Answer & Explanation:
A magnifying glass is convex lens that forms a virtual image in your retina. A magnifying glass is curved or outward; meaning that it is convex. Please rank Brainliest if this helps. Thanks!