Answer: A gas molecules have high kinetic energy due to which they have move rapidly from one place to another
Explanation:
Answer:
M of HI = 5.4 M.
Explanation:
- We have the rule: at neutralization, the no. of millimoles of acid is equal to the no. of millimoles of the base.
<em>(XMV) acid = (XMV) base.</em>
where, X is the no. of (H) or (OH) reproducible in acid or base, respectively.
M is the molarity of the acid or base.
V is the volume of the acid or base.
<em>(XMV) HI = (XMV) Ca(OH)₂.</em>
For HI; X = 1, M = ??? M, V = 25.0 mL.
For Ca(OH)₂, X = 2, M = 1.5 M, V = 45.0 mL.
<em>∴ M of HI = (XMV) Ca(OH)₂ / (XV) HI</em> = (2)(1.5 M)(45.0 mL) / (1)(25.0 mL) = <em>5.4 M.</em>
To try to get attention, it's not safe and you can get sent to the hospital. People think it's a joke, it's really not.
Answer:
PNO₂ = 0.49 atm
PN₂O₄ = 0.45 atm
Explanation:
Let's begin with the equation of ideal gas, and derivate from it an equation that involves the density (ρ = m/V).
PV = nRT
n = m/M (m is the mass, and M the molar mass)


PxM = ρRT
ρ = PxM/RT
With the density of the gas mixture, we can calculate the average of molar mass (Mavg), with the constant of the gases R = 0.082 atm.L/mol.K, and T = 16 + 273 = 289 K

0.94Mavg = 63.9846
Mavg = 68.0687 g/mol
The molar mass of N is 14 g/mol and of O is 16 g/mol, than
g/mol and
g/mol. Calling y the molar fraction:

And,


So,





The partial pressure is the molar fraction multiplied by the total pressure so:
PNO₂ = 0.52x0.94 = 0.49 atm
PN₂O₄ = 0.48x0.94 = 0.45 atm
Answer: 1.9 moles SO₂
Explanation:
1) The chemical formula SO₂ shows that for every mol of SO₂ there are 1 mol of S and two moles of O.
2) Then you can state the proportion between the number of moles of SO₂ and O to find how many moles of SO₂:contains 3.8 moles of O.
1 mol SO₂ x
-------------------- = --------------------------
2 moles O 3.8 moles O
3) Now, you can clear x:
x = 3.8 moles O × 1 mol SO₂ / 2 moles O.
x = 1.9 moles SO₂.