Answer:
0.3257 seconds
39.67 m/s
Explanation:
Speed = 263 km/h
Converting to m/s


Distance to travel = 23.8 m
Time = Distance / Speed

The time taken to go from one end of the court to the other is 0.3257 seconds
Time = 0.6 s
Speed = Distance / Time

The speed of the tennis ball is 39.67 m/s
Answer:
5.714 hours / day
Explanation:
<u>Calculate the hours used in that week </u>
120000 / 3000 = 120 / 3 = 40 hours a week
<u>Calculate the amount it is used in one day</u>
40 / 7 = 5.71428571 hours or 5.714 hours/day
Answer:
it appears to be farther away than it actually is, and therefore smaller then the object itself.
Answer:
The focal length of the appropriate corrective lens is 35.71 cm.
The power of the appropriate corrective lens is 0.028 D.
Explanation:
The expression for the lens formula is as follows;

Here, f is the focal length, u is the object distance and v is the image distance.
It is given in the problem that the given lens is corrective lens. Then, it will form an upright and virtual image at the near point of person's eye. The near point of a person's eye is 71.4 cm. To see objects clearly at a distance of 24.0 cm, the corrective lens is used.
Put v= -71.4 cm and u= 24.0 cm in the above expression.


f= 35.71 cm
Therefore, the focal length of the corrective lens is 35.71 cm.
The expression for the power of the lens is as follows;

Here, p is the power of the lens.
Put f= 35.71 cm.

p=0.028 D
Therefore, the power of the corrective lens is 0.028 D.
Water and baking soda can be used, too.